喝水就打嗝是什么原因| 最高的山是什么山| 梦见洗脚是什么意思| 11点多是什么时辰| 低烧吃什么| 梦见抓了好多鱼是什么意思| 鱼吐泡泡是什么原因| 腰无力是什么原因| 微量蛋白尿高说明什么| 召力念什么| 嘴干嘴苦是什么原因| 喝蒲公英有什么好处| 孕妇子痫是什么病| 胃病吃什么水果好| 过敏性鼻炎用什么药效果好| 越五行属性是什么| 柔肝是什么意思| 意思是什么意思| 肉质瘤是什么东西| 额头上长小疙瘩是什么原因| 肌酐高吃什么药好| 白介素6升高说明什么| 老子和孔子是什么关系| 天津有什么特产| 手指关节疼痛用什么药| 渗透压是什么| 防中暑喝什么水| 做梦梦到大蟒蛇是什么意思| 拔指甲挂什么科| 趴在桌子上睡觉有什么坏处| 被动是什么意思| 跟腱炎吃什么药| 南京菜属于什么菜系| 淋巴结稍大是什么意思| 尽收眼底是什么意思| 36岁属什么| 得莫利是什么意思| 刻薄什么意思| 子宫肌瘤是什么原因导致的| 手抖挂什么科| 包皮溃烂用什么药| 脑梗复查挂什么科| 中午12点半是什么时辰| 经期吃榴莲有什么好处和坏处| 梦到和老公离婚了是什么征兆| 什么是假性银屑病| 王母娘娘姓什么| 化缘是什么意思| 雪燕是什么东西| 五月十八什么星座| 9d是什么意思| 什么补血快| 鼻子闻不到味道是什么原因| 夏天做什么菜| 减肥头晕是什么原因| 金卡有什么好处和坏处| mid是什么意思| bioisland是什么牌子| 老人吃饭老是噎着是什么原因| 吃栗子有什么好处| md是什么意思| 机关党委是干什么的| 腰椎钙化是什么意思| 怀孕吃叶酸有什么用| 结婚的礼数都有什么| 肝火旺盛吃什么药效果最好| 没晨勃说明什么问题| 成双成对是什么意思| 铅中毒用什么解毒| 立夏吃什么| 三个虫念什么| 绝育手术对女性有什么危害| adr是什么激素| 眼睛浮肿什么原因| 长水痘可以吃什么菜| 脂蛋白磷脂酶a2高说明什么| 水洗真丝是什么面料| 五月十三是什么星座| 吃红枣有什么好处| 补办护照需要什么材料| 梦见下雪是什么| 三文鱼和什么不能一起吃| 手术室为什么在三楼| 梦见抓蛇是什么预兆| 九月十六是什么星座| 夏天吃羊肉有什么好处| 韩国是什么民族| 红军为什么要长征| 心境情感障碍是什么病| dtc什么意思| 脚上起水泡用什么药膏| 骨相美是什么意思| 白细胞酯酶阳性什么意思| 女菩萨是什么意思| 芸豆是什么豆| 什么是18k金| sku是什么意思| 青是什么颜色| 诺是什么意思| 正常的心电图是什么样的图形| 什么情况下需要会诊| 补血补气吃什么最快最好| 晚上吃什么菜| 黄体期什么意思| 公安局大队长是什么级别| 此刻朋友这杯酒最珍贵是什么歌| 梦见孕妇大肚子是什么意思| 卖什么意思| 变态什么意思| 牛奶有什么营养| 喝什么会变白| 39岁属什么| 正常舌头是什么颜色| 异丙醇是什么东西| cartier什么牌子| 朝花夕拾什么意思| 每天做梦是什么原因引起| 医政科是做什么的| 这是什么石头| 扁桃体炎吃什么消炎药| 亵渎什么意思| 胃窦糜烂是什么意思严重吗| 湿气用什么药最好最快| aww是什么意思| 女人每天喝什么最养颜| 什么叫丁克| 甲功能5项检查是查的什么| 开飞机需要什么驾照| 低温烫伤是什么意思| 淡水鱼什么鱼最好吃| 蠢是什么意思| 豆干炒什么好吃| 格斗和散打有什么区别| 脾虚湿气重吃什么| 2001年什么年| 喝苦荞茶有什么好处和坏处| 凤凰单丛茶属于什么茶| 痛风吃什么水果最好| 儿童感冒咳嗽吃什么药| 什么人| 头疼想吐是什么原因| 口腔科主要看什么| 什么是扁平疣图片| 吃什么可以散结节| exp是什么意思| 气阴两虚是什么意思| 太上老君的坐骑是什么| 为什么转氨酶会偏高| 尿道口流脓吃什么药| 旗开得胜是什么意思| 7月30日是什么星座| 77年属蛇的是什么命| 身上长小红点是什么原因| 翠色什么流| 胃炎吃什么药| 宝宝睡觉突然大哭是什么原因| 省政协委员是什么级别| 啤酒鸭可以放什么配菜| 引什么大叫| 谵妄是什么意思| 做梦梦到鬼是什么意思| 什么是腺样体面容| 缪斯女神什么意思| 梦到墓地什么预兆| 孕期应该吃什么| 尚公主是什么意思| 世界上最难的字是什么| 一什么风光| 芙蓉是什么| ca199偏高是什么原因| rapido是什么牌子| 胆固醇高对身体有什么危害| 3月28号是什么星座| 代偿期和失代偿期是什么意思| 女人梦见仇人代表什么| oc是什么| 屏蔽一个人意味着什么| 菱角是什么意思| 12月14日什么星座| 什么叫肠易激综合征| 69年属什么| 为什么老是犯困想睡觉| 菜板什么木材最好| 猫猴子是什么| 量贩式ktv什么意思| 喉咙有异物感是什么原因| 上火吃什么药最有效果| 1980属什么| 花是植物的什么器官| 什么叫自慰| 针灸有什么作用| 梦见刷牙是什么预兆| 怀孕一个月内有什么反应| 痔疮是什么样子的图片大全| 12月3日什么星座| 移居改姓始为良是什么意思| 止咳化痰什么药最好| 吃桃胶有什么作用| 直肠肿物是什么意思| 茄子和什么相克| 用减一笔是什么字| tf卡是什么| 脾疼是什么原因| 胃溃疡a1期是什么意思| 梦见小女孩是什么意思| 小个子适合什么发型| 血糖为什么会高| 如来是什么意思| 苹果越狱是什么意思啊| 狻猊是什么| 蜂蜜变质是什么样子| 广东省省长什么级别| 乙肝抗体阳性是什么意思| 糖尿病主食吃什么好| 婴儿什么时候可以吃盐| 男人做梦梦到蛇是什么意思| 舌头裂痕是什么原因| 白术有什么作用| 拔得头筹是什么意思| 草字头一个辛读什么| 细菌感染吃什么抗生素| 鱼加思读什么| 属鸡的跟什么属相最配| 望尘莫及什么意思| 吃什么补肾益精| 脱臼是什么感觉| 女人脱发是什么原因| 六个坚持是什么| 大姨妈一直不干净是什么原因| 慢性前列腺炎有什么症状| 吃什么养肝护肝最好| 飞蚊症用什么药物治疗最好| 黄金分割点是什么| 狗嚎叫有什么预兆| 室性早搏是什么意思| 乳糖不耐受是什么原因导致的| 抽烟为什么会头晕| 星字属于五行属什么| 什么是抑郁| 例假期间适合吃什么水果| 调侃什么意思| 猴的守护神是什么菩萨| 梦见洗鞋子是什么意思| 沙悟净是什么生肖| 痛经是什么意思| 超市是什么意思| 高密度脂蛋白低是什么原因| 6合是什么生肖| 又字五行属什么| 梦见自己生病住院了是什么意思| 竖中指代表什么意思| hpv是什么病毒| 翡翠和玉的区别是什么| 宇字属于五行属什么| 胰腺炎可以吃什么| 水痘疫苗什么时候打| 凌霄花什么时候开花| 生源地是指什么| 经常头疼是什么原因| 鬼最怕什么颜色| 腱鞘炎看什么科| 夏枯草长什么样子| 蛰居是什么意思| 尿酸高有什么症状| 百度

夏天,在三明完成这6种清凉的旅游体验,才不虚此行!

Method and apparatus for predicting outcomes of a home equity line of credit Download PDF

Info

Publication number
WO2008014089A2
WO2008014089A2 PCT/US2007/072682 US2007072682W WO2008014089A2 WO 2008014089 A2 WO2008014089 A2 WO 2008014089A2 US 2007072682 W US2007072682 W US 2007072682W WO 2008014089 A2 WO2008014089 A2 WO 2008014089A2
Authority
WO
WIPO (PCT)
Prior art keywords
account
heloc
state vector
loan
statistical
Prior art date
Application number
PCT/US2007/072682
Other languages
French (fr)
Other versions
WO2008014089A3 (en
Inventor
Mark Beardsell
Harlow Burgess
Paul Calem
Original Assignee
First American Corelogic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First American Corelogic, Inc. filed Critical First American Corelogic, Inc.
Publication of WO2008014089A2 publication Critical patent/WO2008014089A2/en
Publication of WO2008014089A3 publication Critical patent/WO2008014089A3/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY?PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/02Banking, e.g. interest calculation or account maintenance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY?PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY?PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/03Credit; Loans; Processing thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY?PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/06Asset management; Financial planning or analysis

Definitions

  • the present invention relates to home equity lines of credit (HELOC) and more particularly to a method and apparatus for generating outcome predictions for a HELOC.
  • HELOC home equity lines of credit
  • HELOC account state transition probabilities are modeled.
  • the transition probabilities determined by historic data regression analysis, provide the framework for a Monte Carlo simulation.
  • the simulation is seeded with HELOC account information.
  • a calculation engine takes the account information and simulates an elapse of time using a random number generator and the state transition probabilities.
  • the simulation results in updated account information predicting a possible outcome over the elapsed time interval.
  • the updated account information in turn may be used by the calculation engine to simulate the next elapse of time. This method may be iteratively repeated with the account information propagated forward until the end of the prediction period is reached.
  • the account information generated represents a possible outcome of the HELOC account over the prediction period.
  • the simulation process may be repeated many times using the identical account information seed generating an ensemble of possible account outcomes.
  • the ensemble may be aggregated to generate statistics of significant HELOC events such as default, delinquency, payment and draw.
  • the present invention provides a machine-readable medium having instructions for predicting outcomes of a home equity line of credit loan.
  • the instructions upon execution cause a machine to receive a plurality of account characteristics for a home equity line of credit loan, generate an initial account state vector from the plurality of account characteristics, receive a simulation parameter, update the initial account state vector by propagating a state vector forward using a statistical transition model, predict draw or payment events using the statistical transition model, and generate probability distributions and compute account statistics using the statistical transition model.
  • the present invention provides a computer-based method for forecasting possible outcomes of a home equity line of credit (HELOC).
  • the method includes generating a HELOC account simulation model having a plurality of possible account states, receiving account information for seeding a simulation, simulating an outcome by seeding the simulation with account information and iteratively predicting a next account state from the plurality of possible account states using the HELOC account simulation model, generating an ensemble of simulated outcomes, and aggregating the outcome ensemble into one or more probability statistics.
  • the present invention provides a method for estimating the expected return from a home equity line of credit (HELOC) account.
  • the method includes generating a statistical model from historic HELOC data, receiving account information about a prospective HELOC, comparing the account information with the statistical model, and predicting loan balance statistics from the comparison.
  • HELOC home equity line of credit
  • the present invention provides a method for calculating the utilization statistics of a home equity line of credit (HELOC) using Monte Carlo methods.
  • the method includes generating a statistical transition model of possible HELOC account states, receiving HELOC account data, simulating a plurality of possible account outcomes by seeding the statistical transition model with HELOC account data, and generating one or more probability statistics from the plurality of possible account outcomes.
  • FIG. 1 is a block diagram of a system having a computational engine according to an embodiment of the present invention.
  • FIG. 2 is a state transition diagram of a statistical transition model used by the computational engine of FIG. 1 according to an embodiment of the present invention.
  • FIG. 3 is a flow diagram showing a method for predicting outcomes of a HELOC loan according to an embodiment of the present invention.
  • FIG. 4 shows the predicted cumulative charge off and delinquency probabilities of an exemplary HELOC account according to an embodiment of the present invention.
  • FIG. 5 shows the predicted monthly new draw and additional draw probabilities of an exemplary HELOC account according to an embodiment of the present invention.
  • FIG. 6 shows the predicted monthly partial and full payoff probabilities of an exemplary HELOC account according to an embodiment of the present invention.
  • FIG. 7 shows the predicted monthly utilization distribution quartiles of an exemplary
  • HELOC account according to an embodiment of the present invention.
  • FIG. 8 shows the predicted median monthly utilization probabilities of an exemplary
  • HELOC account with a CLTV of 75% by FICO score according to an embodiment of the present invention.
  • FIG. 9 shows the predicted median monthly utilization probabilities of an exemplary
  • HELOC account with a CLTV of 95% by FICO score according to an embodiment of the present invention.
  • FIG. 10 shows the predicted cumulative charge off probability of an exemplary
  • HELOC account with different prime rates according to an embodiment of the present invention.
  • FIG. 1 1 shows the monthly full payoff probability of an exemplary HELOC account with different prime rates according to an embodiment of the present invention.
  • FIG. 12 shows the monthly charge off probabilities of a hypothetical HELOC account with different housing price indexes according to an embodiment of the present invention.
  • the present invention provides a method and apparatus for predicting outcomes of a HELOC.
  • the outcome predictions provide a useful risk management tool for HELOC lenders.
  • Lenders can use the tool to evaluate a loan, a loan portfolio or perform a sensitivity analysis.
  • a sensitivity analysis allows an institution to determine potential risks associated with exogenous events. For example an institution may want to see how their risk exposure changes with a one percent increase in the prime rate.
  • HELOC loans have become increasingly popular with homeowners and lending institutions. Lenders favor the loans because they allow the lender to extend credit to a homeowner while minimizing default risk by securing the loan with a lien against the homeowner's home. Homeowner's favor the loans because they allow a homeowner to tap the equity in their home as needed to provide for unforeseen expenses. Tax deducibility of qualifying HELOC loans makes the loans even more attractive to homeowners.
  • the risk analysis usually includes gathering information for the prospective loan account. The information includes credit worthiness indicators such as the borrower's FICO credit score, the value of collateral and existing liens against the borrower, etc.
  • the information provides the lender with key ratios such as the combined loan-to-value ratio (CLTV) which lenders use to determine the creditworthiness of a potential borrower.
  • CLTV combined loan-to-value ratio
  • the information in the prospective loan account is also compared with historical data to evaluate the risk of default, delinquency and prepayment. If the lender determines that these risks are small and manageable relative to the potential profit, the lender will make the loan.
  • HELOCs have attributes that make risk analysis even more complex.
  • the lender does not know how extensively the homeowner will use the line of credit or what the outstanding balances will be.
  • one homeowner may use the HELOC exclusively for rare emergencies infrequently drawing small amounts money and paying off the balance as soon as possible.
  • Another homeowner may use the HELOC loan to fund a college education steadily drawing funds for four years maxing out (completely utilizing) the HELOC and slowly repaying the loan in consistent steady payments over fifteen years.
  • the potential profits and risks associated with each of these HELOCs are very different.
  • the remarkable differences in loan balances and loan utilization makes the HELOC risk analysis much more complex than other home loans. From this example, a good HELOC risk analysis should include not only evaluating the probability of default, delinquency and prepayment but should also include a good prediction of the homeowner's payment and draw behavior over time.
  • a method and apparatus that predicts payment and draw information as well as default, delinquency, prepayment probabilities is an invaluable risk management tool.
  • institutions can more precisely quantify their risk exposure and determine from which accounts a HELOC would be most profitable.
  • the tools also allow institutions to predict the effect of exogenous events (such as an interest rate increase) on individual HELOCs and any resulting change in the institutions risk exposure.
  • the tools can be used by an institution to periodically evaluate its HELOC portfolio and terminate HELOC accounts where the expected return on the account is no longer attractive.
  • HELOC outcome forecasting may further provide securitization of the HELOC market. Traditionally, institutions were reluctant to purchase delinquent accounts.
  • FIG. 1 is a block diagram of a system 100 having a computational engine 102.
  • the computational engine 102 may be a computing platform capable of performing mathematical operations, storing numbers and arrays, and generating random numbers.
  • the computing platform simulates possible outcomes of a HELOC using a Monte Carlo methodology.
  • the HELOC account information 104 may be fed into the computational engine 102.
  • the computational engine 102 may parse the account information 104 storing the data as needed for a HELOC statistical model (explained herein).
  • the computational engine 102 may generate an initial account state vector from the account information 104.
  • An account state vector may include dynamic account information such as the loan balance, CLTV ratio, interest rates, home price and previous delinquencies that is used by the statistical transition model to determine the probability of state transition.
  • the initial account state vector may be used as a seed to simulate theoretical outcomes of the HELOC account. The results of numerous simulations are aggregated to determine HELOC outcome probabilities.
  • the computational engine 102 may propagate forward the state vector. Propagating the state vector simulates the effect of time on a HELOC.
  • a statistical transition model and a random number generator may be used.
  • the statistical transition model may include the theoretical probabilities of an event occurring over a specified time interval.
  • the computational engine 102 may use a random number generator to simulate the effect of a lapse of time on the account and may update the account state vector accordingly. For example, if the historic data indicate that there is 0.1% chance that an account with similar characteristics will default in the time interval, the computational engine 102 may generate a random number. If the random number generator generates a number that is in a predetermined interval that has a 0.1% chance of occurring, the computational engine 102 may update the account state vector to indicate a default. The computational engine 102 may repeat this process for each of the state variables in the account state vector generating a new account state vector that represents the account state propagated forward in time. The newly generated account state vector may be stored in a memory and may be fed back via a feedback loop 106 into the computational engine 102 where the account state vector is again propagated forward using the statistical transition model. This process may be repeated until the end of the prediction period is reached.
  • the computational engine 102 may rely on the statistical model to propagate the account state vector.
  • the statistical model may include state transition equations or matrices whose coefficients are derived from historic HELOC data. The coefficients can be updated periodically to improve or refine the model by mining historic HELOC data and performing a regression analysis.
  • the account state transition probabilities (explained hereinafter) can be mutually exclusive and binary and can be determined using logistic regression analysis.
  • the computational engine 102 may run multiple simulations using the initial account state vector to generate an ensemble of outcomes. The ensemble of outcomes may be aggregated to generate cumulative probability distribution curves and related statistical information. The curves and statistics are outputs 108 providing insight into the probabilities and timing of significant HELOC events such as default and delinquency.
  • the computational engine 102 also outputs expected values, variances, and other probability information for loan payments and draws.
  • FIG. 2 shows a state transition diagram of a statistical transition model used by the computational engine 102 to propagate the account state vector forward.
  • the state transition diagram may have six primary states.
  • the first state C 202 may represent an account that is current.
  • the second state Dl 204 may represent an account for which a payment is 30-59 days delinquent.
  • the third state D2 206 may represent an account for which a payment is 60- 89 days delinquent.
  • the fourth state D3 208 may represent an account that is 90-1 19 days delinquent.
  • the fifth state D4 210 may represent an account that is 120-179 days delinquent.
  • the sixth state P 212 may represent an account with no balance.
  • the account states are mutually exclusive. That is, an account must be in one and only one state at any given time.
  • An account in state C 202 may transition to state P 212 simulating the event that a homeowner paid off the complete loan balance.
  • An account in state C 202 may also transition to state Dl 204 simulating the event that the homeowner is 30-59 days delinquent.
  • An account in state C 202 may also remain in state C 202 simulating the event that the owner has been making appropriate and timely loan payments.
  • Three other possible events may occur with an account in state C 202.
  • the homeowner may make a draw, C + 214, on the account increasing the outstanding balance. The draw causes an increase in the utilization of the HELOC.
  • the homeowner may make only the required timely payment, C 0 216, with only a small change in the outstanding balance. The payment results in only a small change for the utilization of the HELOC.
  • Third, the homeowner may make a partially payoff, C " 218, reducing the outstanding balance. The payment results in a decrease in the utilization of the HELOC.
  • An account in state Dl 204 may remain in state Dl 204 simulating the event that the loan is still 30-59 days delinquent.
  • the account may also transition to state D2 simulating the event that the loan is now 60-89 days delinquent.
  • the account may transition to state P 212 simulating the event that the homeowner has paid off the entire loan balance.
  • the account may also transition to state C 202 simulating the account owner has made a large enough payment to cover all outstanding payments due.
  • An account in state D2 206 may remain in state D2 206 simulating the event that the loan is still 60-89 days delinquent.
  • the account may also transition to state D3 208 simulating the event that the loan is now 90-119 days delinquent.
  • the account may transition to state P 212 simulating the event that the homeowner has paid off the entire loan balance.
  • the account may also transition to state Dl 204 simulating the event that the homeowner has made a payment to cover the portion of the loan that is 60-89 days delinquent but has not paid enough to cover the portion of the loan that is 30-59 days delinquent.
  • the account may also transition to state C 202 simulating the account owner has made a large enough payment to cover all outstanding payments due.
  • An account in state D3 208 may remain in state D3 208 simulating the event that the loan is still 90-1 19 days delinquent.
  • the account may also transition to state D4 simulating the event that the loan is now 120- 179 days delinquent.
  • the account may transition to state P 212 simulating the event that the homeowner has paid off the entire loan balance.
  • the account may also transition to state D2 206 simulating the event that the homeowner has made a payment to cover the portion of the loan that is 90-119 days delinquent but has not paid enough to cover the portion of the loan that is 60-89 days delinquent.
  • the account may also transition to state D 1 204 simulating the event that the homeowner has made a payment to cover the portion of the loan that is 90-119 days delinquent and any portion that is 60-89 days delinquent but has not paid enough to cover the portion of the loan that is 30-59 days delinquent.
  • the account may also transition to state C 202 simulating the event that the homeowner has made a large enough payment to cover all outstanding payments due.
  • the account may also transition to a charge off state L 220 indicating the lending institution does not expect repayment or has sold the debt to a collection agency.
  • An account in state D4 210 may remain in state D4 210 simulating the event that the loan is still 120-179 days delinquent.
  • the account may transition to state P 212 simulating the event that the homeowner has paid off the entire loan balance.
  • the account may also transition to state D3 208 simulating the event that the homeowner has made a payment to cover the portion of the loan that is delinquent 120- 179 days late but has not paid enough to cover the portion of the loan that is 90-119 days delinquent.
  • the account may also transition to D2 206 simulating the event that the homeowner has made a payment to cover the portion of the loan that is delinquent 120- 179 days and any portion that is delinquent 90-1 19 days but has not paid enough to cover the portion of the loan that is 60-89 days delinquent.
  • the account may also transition to state Dl 204 simulating the event that the homeowner has made a payment to cover the portion of the loan that is delinquent 120- 179 days, any portion that is delinquent 90-1 19 and any portion that is delinquent 60-89 days but has not paid enough to cover the portion of the loan that is 30 to 59 days delinquent.
  • the account may also transition to state C 202 simulating that the homeowner has made a large enough payment to cover all outstanding payments due.
  • the account may also transition to a charge off state L 220.
  • An account in state P 212 may remain in state P 212 simulating the event that the HELOC is unused or currently paid off.
  • the account may transition to state C 202 simulating an event that a customer draws on the HELOC.
  • the account may also transition to state T 222 which simulates the event that the customer or the loan institution terminates the HELOC. It should be noted that an ongoing state P 212 is a unique line of credit loans. There is no loan but credit is available.
  • a charge off model independent of the state transition model may predict loss on an account given default.
  • the model allows the calculation engine 102 to compute the magnitude of risk exposure over the prediction period.
  • the state transitions form the framework for propagation of the account state vector.
  • the account state vector may be propagated forward in time using a random walk with the frame change probabilities based on the statistical transition model.
  • the statistical transition model may include equations or equation coefficients generated from historic HELOC data.
  • the computational engine 102 uses the statistical transition model to propagate the account state vector forward, prediction interval by prediction interval, in a Markov process generating account information at each prediction interval in the prediction period.
  • the resulting series of account state vectors generated represents a snapshot of the account information of a single hypothetical account outcome at each time interval over the prediction period.
  • the computational engine 102 can repeat the propagation process many times (preferably thousands) generating numerous hypothetical account outcomes from the same initial account information.
  • the ensemble of state vector series can be aggregated to estimate the probability distribution of outcomes for the account.
  • FIG. 3 is a flow diagram showing a method for predicting outcomes (e.g., determining the outcome probability distribution) of a HELOC loan.
  • account characteristics of a HELOC account are input into or received by the computational engine 102 (S 302).
  • the account characteristics include data used by the computational engine 102 to forecast default, delinquency, payments and draws.
  • the account characteristics may include location of the home (e.g. California), loan origination date, property value, occupancy (e.g. owner), junior ratio (limit/value), utilization at origination, balance at origination, term, back end ratio, prediction start date, index rate, margin, interest rates and home price index.
  • the computational engine 102 may generate an initial account state vector from the account characteristics (S 304).
  • the state vector may include all information that is needed for the computational engine 102 to determine the probabilities of each state transition shown in FIG. 2.
  • the utilization rate may be a quantitative indicator of the probability of state transition.
  • a homeowner who has maxed out (full utilization) his HELOC is more likely to default than a homeowner who has only utilized 10% of available credit.
  • the initial state vector also has place holders for other quantitative indicators of the probability of state transition that may be acquired during the prediction period (e.g., a loan payment delinquency). An account that has numerous payment delinquencies is more likely to default than an account with no payment delinquencies.
  • simulation parameters and assumptions are entered into or received by the computational engine 102 (S 306).
  • the loan prediction period, the prediction interval and the number of Monte Carlo trials can be entered or defaults accepted.
  • the user may want a very precise estimate of the month to month account outcome probabilities over the next five years.
  • the user may choose a one month prediction interval, a five year prediction interval, and a robust number of trials, for example 10,000.
  • the computational engine 102 may store the account state vector, the trial number and the prediction interval (S 308). If the computational engine 102 has no account state vector, trial number and prediction interval, the computational engine 102 stores the initial account state vector as the account state vector, a one for the trial number and a zero for the prediction interval.
  • the computational engine 102 updates the account state vector by propagating the state vector forward using the statistical transition models (S-310).
  • the account state vector may propagate according to the state transition diagram in FIG. 2.
  • the statistical transition models may contain the equations and coefficients necessary to determine the transition probabilities based on the information in the account state vector. If the current state vector is in state C, the computational engine 102 may use the statistical transition model to predict draw or payment events. A draw or payment may or may not be made. If a draw or payment is made, the statistical transition model may predict the size of the draw or payment.
  • the computational engine 102 may increment the prediction interval counter (S 312). The prediction interval counter may be used by the calculation engine 102 to track which prediction interval the updated account state vector corresponds with.
  • the computational engine 102 may test to see if the prediction interval corresponds with the end of the prediction period (S 314). If it does not, the computational engine 102 may return to S 308 to propagate the account state vector forward over the next interval. If the interval is the end of the prediction period, the computational engine 102 may increment the trial number (S 316).
  • the computational engine 102 may check to see if the trial number corresponds with the number of trials. If it does not, the computational engine 102 may save the initial account state vector as the account state vector and return to S 308 to begin a new account simulation trial. If the trial number corresponds with the final trial, a complete ensemble of account simulations has been generated with each account simulation in the ensemble having the same initial account information. [0051] The computational engine 102 may generate probability distributions and compute account statistics using the statistical transition models (S 320). The probability distributions and the account statistics may be presented to the user in a number of formats. [0052] FIGS. 4-12 show exemplary outputs 108 of the computational engine 102 of FIG. 1 or the method of FIG. 3. FIG.
  • the X axis 410 shows discrete time intervals of the time period and the Y axis 412 shows the cumulative probabilities.
  • the 60 day 402, 90 day 404 and 120 day 406 delinquencies and charge off 408 probabilities correspond respectively with state transitions to state D2 206, state D3 208, state D4 210 and state L 220 of the state transition model shown in FIG. 2.
  • the cumulative delinquency probabilities monotonically increase until the end of the prediction period.
  • the 60 day 402 delinquency probabilities are larger than the 90 day 404 delinquency probabilities which are larger than the 120 day 406 delinquency probabilities which are larger than the charge off delinquency probabilities.
  • FIG. 5 shows the probability of a new draw 502 or an additional draw 504 from an exemplary HELOC account over a 60-month prediction period.
  • the probabilities are presented as probability densities and not as a cumulative distribution function.
  • the X axis 506 shows discrete time intervals of the time period and the Y axis 508 shows the monthly probabilities.
  • the probability of a new draw is highest at the time the HELOC account is opened. The need for a draw may have been the motivation for opening the account. Additional draws are also most common near the time the HELOC account is opened.
  • One factor possibly motivating a homeowner to open a line of credit is that the homeowner is unsure of his prospective borrowing needs.
  • FIG. 6 shows the monthly full payoff 602 and partial payoff probabilities 604 of an exemplary HELOC account.
  • the X axis 604 shows discrete time intervals of the time period and the Y axis 608 shows the monthly probabilities.
  • the prediction curves on this plot are not intuitive making the outcome probabilities more informative. In this case, the outcome probabilities provides a lending institution valuable information about the probability that HELOC loan will be paid off or partially paid off, ending or decreasing a profit stream.
  • FIG. 7 shows the monthly utilization distribution quartiles of a hypothetical HELOC account.
  • the X axis 702 shows discrete time intervals of the time period and the Y axis 704 shows the utilization rate.
  • This plot provides a lending institute with important HELOC information.
  • the utilization rate determines the outstanding HELOC balance and thus the revenue stream from the loan.
  • the upper quartile shows 75 l percentile probability of HELOC utilization while the lower quartile shows the 25 th percentile probability of HELOC utilization.
  • FIGS. 8-9 together show the effects of two variables on account utilization, namely FICO scores and CLTV.
  • the CLTV ratio is held fixed at 75% and the utilization rates for a 600 FICO score 802, a 650 FICO score 804, a 700 FICO score 806 and a 750 FICO score 808 are shown over the 60-month prediction period.
  • the CLTV ratio is held fixed at 95% and the utilization rates for a 600 FICO score 902, a 650 FICO score 904, a 700 FICO score 906 and a 750 FICO score 908 are shown over the 60-month prediction period.
  • the X axes 810, 910 show discrete time intervals of the time period and the Y axes 812, 912 show the utilization rate.
  • the plots provide insight into the effect of FICO score on a utilization rate for a fixed CLTV and the effect of CLTV on utilization rate for a fixed FICO score.
  • CLTV and FICO score are two of the best indicators of creditworthiness.
  • FIGS. 10-12 are plots showing the hypothetical effects of exogenous events on an exemplary HELOC account. This type of information is particularly useful for a lending institution to evaluate its risk exposure.
  • FIGS. 10 and 11 show the effect a change in the prime lending rate would have on the charge off and payoff probabilities of a HELOC account. Once again, it is notable the charge off and payoff probabilities correspond to transitions to account states L 220 and P 212. It is also notable that the prediction periods along the X axes 1003, 1103 are 120 months.
  • the cumulative distribution of charge offs is plotted along the Y axis 1004.
  • the density of payoffs is plotted along the Y axis 1104.
  • Each plot shows the effect of an interest rate change of 250 basis point upward 1004, 1 104, a change of 150 basis point upward 1006, 1 106, a change of 50 basis points upward 1008, 1108, no change 1010, 1110, a change of 50 basis points downward 1012, 1112, a change of 150 basis points downward 1014, 1114, and a change of 250 basis points downward 1016, 1116.
  • These hypothetical scenarios provide lending institutions insight into their risk and profitability margins.
  • FIGS. 10-12 are plots showing the hypothetical effects of a housing price increase on a hypothetical HELOC account.
  • the prediction period of 120 months is plotted along the X axis 1202 and the cumulative probability percentage is plotted along the Y axis 1204.
  • the effect of no housing price increase 1206, a 10% increase 1208, and a 15% increase are shown.
  • the plots confirm that an increase in housing prices decreases the probability of a HELOC charge off.
  • FIGS. 4-12 illustrate different ways of presenting data generated with the present invention. They are exemplary outputs 108 of the computational engine 102. Outputs 108 containing cumulative distribution functions, density functions, expected values, variances, skews and other statistics of each state variable, account parameter and data type are contemplated. Outputs 108 showing multiple random variable distributions and density functions as well as cross correlation, autocorrelation, and power spectral density statistics are also contemplated.
  • the various illustrative logical blocks and modules may be implemented or performed in software, hardware, and combinations thereof with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an Application Specific Integrated Circuit (ASIC).
  • the ASIC may reside in a wireless modem.
  • the processor and the storage medium may reside as discrete components in the wireless modem.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Development Economics (AREA)
  • Technology Law (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Human Resources & Organizations (AREA)
  • Operations Research (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A method and apparatus are described where account information is used to predict possible outcomes of a HELOC. To predict the possible outcomes, HELOC account state transition probabilities are modeled. The transition probabilities, determined by historic data regression analysis, provide the framework for a Monte Carlo simulation. The simulation is seeded with HELOC account information. A calculation engine takes the account information and simulates an elapse of time using a random number generator and the state transition probabilities. The simulation results in updated account information predicting a possible outcome over the elapsed time interval. The updated account information in turn may be used by the calculation engine to simulate the next elapse of time. This method may be iteratively repeated with the account information propagated forward until the end of the prediction period is reached.

Description

METHOD AND APPARATUS FOR PREDICTING OUTCOMES OF A HOME EQUITY LINE OF CREDIT
Claim of Priority under 35 U.S.C. §119
[0001] The present Application for Patent claims priority to Provisional Application No. 60/817,845, entitled "Method and Apparatus for Predicting Outcomes of a Home Equity Line of Credit," filed on June 30, 2006, and assigned to the assignee hereof and hereby expressly incorporated by reference herein.
BACKGROUND Field
[0002] The present invention relates to home equity lines of credit (HELOC) and more particularly to a method and apparatus for generating outcome predictions for a HELOC.
Related Art
[0003] In the mortgage industry, the decision-making process of whether or not to grant a HELOC to a borrower may depend on a number of factors such as the borrower's income, amount of equity in the home, etc. Banks and lending institutions must ensure that the primary mortgage in combination with the HELOC do not provide an unacceptably high risk that the loans will be defaulted on. Current methods for measuring this risk involve ineffective, unsubstantiated, paper review programs that fail to produce meaningful assessments for lenders and purchasers of loans. Thus, there is a need for a cost-effective and accurate method for quantifying risk associated with a HELOC.
SUMMARY
[0004] According to the present invention, a method and apparatus are described where account information is used to predict possible outcomes of a HELOC. To predict the possible outcomes, HELOC account state transition probabilities are modeled. The transition probabilities, determined by historic data regression analysis, provide the framework for a Monte Carlo simulation. The simulation is seeded with HELOC account information. A calculation engine takes the account information and simulates an elapse of time using a random number generator and the state transition probabilities. The simulation results in updated account information predicting a possible outcome over the elapsed time interval. The updated account information in turn may be used by the calculation engine to simulate the next elapse of time. This method may be iteratively repeated with the account information propagated forward until the end of the prediction period is reached. The account information generated represents a possible outcome of the HELOC account over the prediction period. The simulation process may be repeated many times using the identical account information seed generating an ensemble of possible account outcomes. The ensemble may be aggregated to generate statistics of significant HELOC events such as default, delinquency, payment and draw.
[0005] In one embodiment, the present invention provides a machine-readable medium having instructions for predicting outcomes of a home equity line of credit loan. The instructions upon execution cause a machine to receive a plurality of account characteristics for a home equity line of credit loan, generate an initial account state vector from the plurality of account characteristics, receive a simulation parameter, update the initial account state vector by propagating a state vector forward using a statistical transition model, predict draw or payment events using the statistical transition model, and generate probability distributions and compute account statistics using the statistical transition model.
[0006] In one embodiment, the present invention provides a computer-based method for forecasting possible outcomes of a home equity line of credit (HELOC). The method includes generating a HELOC account simulation model having a plurality of possible account states, receiving account information for seeding a simulation, simulating an outcome by seeding the simulation with account information and iteratively predicting a next account state from the plurality of possible account states using the HELOC account simulation model, generating an ensemble of simulated outcomes, and aggregating the outcome ensemble into one or more probability statistics.
[0007] In one embodiment, the present invention provides a method for estimating the expected return from a home equity line of credit (HELOC) account. The method includes generating a statistical model from historic HELOC data, receiving account information about a prospective HELOC, comparing the account information with the statistical model, and predicting loan balance statistics from the comparison.
[0008] In one embodiment, the present invention provides a method for calculating the utilization statistics of a home equity line of credit (HELOC) using Monte Carlo methods. The method includes generating a statistical transition model of possible HELOC account states, receiving HELOC account data, simulating a plurality of possible account outcomes by seeding the statistical transition model with HELOC account data, and generating one or more probability statistics from the plurality of possible account outcomes.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] The features, objects, and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, wherein:
[0010] FIG. 1 is a block diagram of a system having a computational engine according to an embodiment of the present invention.
[0011] FIG. 2 is a state transition diagram of a statistical transition model used by the computational engine of FIG. 1 according to an embodiment of the present invention. [0012] FIG. 3 is a flow diagram showing a method for predicting outcomes of a HELOC loan according to an embodiment of the present invention.
[0013] FIG. 4 shows the predicted cumulative charge off and delinquency probabilities of an exemplary HELOC account according to an embodiment of the present invention.
[0014] FIG. 5 shows the predicted monthly new draw and additional draw probabilities of an exemplary HELOC account according to an embodiment of the present invention.
[0015] FIG. 6 shows the predicted monthly partial and full payoff probabilities of an exemplary HELOC account according to an embodiment of the present invention.
[0016] FIG. 7 shows the predicted monthly utilization distribution quartiles of an exemplary
HELOC account according to an embodiment of the present invention.
[0017] FIG. 8 shows the predicted median monthly utilization probabilities of an exemplary
HELOC account with a CLTV of 75% by FICO score according to an embodiment of the present invention.
[0018] FIG. 9 shows the predicted median monthly utilization probabilities of an exemplary
HELOC account with a CLTV of 95% by FICO score according to an embodiment of the present invention.
[0019] FIG. 10 shows the predicted cumulative charge off probability of an exemplary
HELOC account with different prime rates according to an embodiment of the present invention.
[0020] FIG. 1 1 shows the monthly full payoff probability of an exemplary HELOC account with different prime rates according to an embodiment of the present invention.
[0021] FIG. 12 shows the monthly charge off probabilities of a hypothetical HELOC account with different housing price indexes according to an embodiment of the present invention. DETAILED DESCRIPTION
[0022] Methods and systems that implement the embodiments of the various features of the invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the invention and not to limit the scope of the invention. Reference in the specification to "one embodiment" or "an embodiment" is intended to indicate that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least an embodiment of the invention. The appearances of the phrase "in one embodiment" or "an embodiment" in various places in the specification are not necessarily all referring to the same embodiment. Throughout the drawings, reference numbers are re-used to indicate correspondence between referenced elements. In addition, the first digit of each reference number indicates the figure in which the element first appears.
[0023] The present invention provides a method and apparatus for predicting outcomes of a HELOC. The outcome predictions provide a useful risk management tool for HELOC lenders. Lenders can use the tool to evaluate a loan, a loan portfolio or perform a sensitivity analysis. A sensitivity analysis allows an institution to determine potential risks associated with exogenous events. For example an institution may want to see how their risk exposure changes with a one percent increase in the prime rate.
[0024] HELOC loans have become increasingly popular with homeowners and lending institutions. Lenders favor the loans because they allow the lender to extend credit to a homeowner while minimizing default risk by securing the loan with a lien against the homeowner's home. Homeowner's favor the loans because they allow a homeowner to tap the equity in their home as needed to provide for unforeseen expenses. Tax deducibility of qualifying HELOC loans makes the loans even more attractive to homeowners. [0025] Before a lender makes any loan, the lender performs a risk analysis. The risk analysis usually includes gathering information for the prospective loan account. The information includes credit worthiness indicators such as the borrower's FICO credit score, the value of collateral and existing liens against the borrower, etc. The information provides the lender with key ratios such as the combined loan-to-value ratio (CLTV) which lenders use to determine the creditworthiness of a potential borrower. The information in the prospective loan account is also compared with historical data to evaluate the risk of default, delinquency and prepayment. If the lender determines that these risks are small and manageable relative to the potential profit, the lender will make the loan.
[0026] HELOCs have attributes that make risk analysis even more complex. For example, the lender does not know how extensively the homeowner will use the line of credit or what the outstanding balances will be. For example, one homeowner may use the HELOC exclusively for rare emergencies infrequently drawing small amounts money and paying off the balance as soon as possible. Another homeowner may use the HELOC loan to fund a college education steadily drawing funds for four years maxing out (completely utilizing) the HELOC and slowly repaying the loan in consistent steady payments over fifteen years. The potential profits and risks associated with each of these HELOCs are very different. The remarkable differences in loan balances and loan utilization makes the HELOC risk analysis much more complex than other home loans. From this example, a good HELOC risk analysis should include not only evaluating the probability of default, delinquency and prepayment but should also include a good prediction of the homeowner's payment and draw behavior over time.
[0027] A method and apparatus that predicts payment and draw information as well as default, delinquency, prepayment probabilities is an invaluable risk management tool. Using these types of tools, institutions can more precisely quantify their risk exposure and determine from which accounts a HELOC would be most profitable. The tools also allow institutions to predict the effect of exogenous events (such as an interest rate increase) on individual HELOCs and any resulting change in the institutions risk exposure. The tools can be used by an institution to periodically evaluate its HELOC portfolio and terminate HELOC accounts where the expected return on the account is no longer attractive. [0028] HELOC outcome forecasting may further provide securitization of the HELOC market. Traditionally, institutions were reluctant to purchase delinquent accounts. However, the number of accounts that have some delinquency over the prior year is substantial and in recent years some institutions have begun to tolerate some delinquent activity. A tool that accurately predicts future payments and default probabilities would allow more accurate quantification of risk and more appropriate pricing of HELOC accounts in secondary markets.
[0029] FIG. 1 is a block diagram of a system 100 having a computational engine 102. The computational engine 102 may be a computing platform capable of performing mathematical operations, storing numbers and arrays, and generating random numbers. The computing platform simulates possible outcomes of a HELOC using a Monte Carlo methodology. The HELOC account information 104 may be fed into the computational engine 102. The computational engine 102 may parse the account information 104 storing the data as needed for a HELOC statistical model (explained herein). The computational engine 102 may generate an initial account state vector from the account information 104. An account state vector may include dynamic account information such as the loan balance, CLTV ratio, interest rates, home price and previous delinquencies that is used by the statistical transition model to determine the probability of state transition. The initial account state vector may be used as a seed to simulate theoretical outcomes of the HELOC account. The results of numerous simulations are aggregated to determine HELOC outcome probabilities. [0030] To generate a simulation, the computational engine 102 may propagate forward the state vector. Propagating the state vector simulates the effect of time on a HELOC. To propagate the state vector forward, a statistical transition model and a random number generator may be used. The statistical transition model may include the theoretical probabilities of an event occurring over a specified time interval. The computational engine 102 may use a random number generator to simulate the effect of a lapse of time on the account and may update the account state vector accordingly. For example, if the historic data indicate that there is 0.1% chance that an account with similar characteristics will default in the time interval, the computational engine 102 may generate a random number. If the random number generator generates a number that is in a predetermined interval that has a 0.1% chance of occurring, the computational engine 102 may update the account state vector to indicate a default. The computational engine 102 may repeat this process for each of the state variables in the account state vector generating a new account state vector that represents the account state propagated forward in time. The newly generated account state vector may be stored in a memory and may be fed back via a feedback loop 106 into the computational engine 102 where the account state vector is again propagated forward using the statistical transition model. This process may be repeated until the end of the prediction period is reached.
[0031] The computational engine 102 may rely on the statistical model to propagate the account state vector. The statistical model may include state transition equations or matrices whose coefficients are derived from historic HELOC data. The coefficients can be updated periodically to improve or refine the model by mining historic HELOC data and performing a regression analysis. The account state transition probabilities (explained hereinafter) can be mutually exclusive and binary and can be determined using logistic regression analysis. [0032] The computational engine 102 may run multiple simulations using the initial account state vector to generate an ensemble of outcomes. The ensemble of outcomes may be aggregated to generate cumulative probability distribution curves and related statistical information. The curves and statistics are outputs 108 providing insight into the probabilities and timing of significant HELOC events such as default and delinquency. The computational engine 102 also outputs expected values, variances, and other probability information for loan payments and draws.
[0033] FIG. 2 shows a state transition diagram of a statistical transition model used by the computational engine 102 to propagate the account state vector forward. The state transition diagram may have six primary states. The first state C 202 may represent an account that is current. The second state Dl 204 may represent an account for which a payment is 30-59 days delinquent. The third state D2 206 may represent an account for which a payment is 60- 89 days delinquent. The fourth state D3 208 may represent an account that is 90-1 19 days delinquent. The fifth state D4 210 may represent an account that is 120-179 days delinquent. The sixth state P 212 may represent an account with no balance. In one embodiment, the account states are mutually exclusive. That is, an account must be in one and only one state at any given time.
[0034] An account in state C 202 may transition to state P 212 simulating the event that a homeowner paid off the complete loan balance. An account in state C 202 may also transition to state Dl 204 simulating the event that the homeowner is 30-59 days delinquent. An account in state C 202 may also remain in state C 202 simulating the event that the owner has been making appropriate and timely loan payments. Three other possible events may occur with an account in state C 202. First, the homeowner may make a draw, C+ 214, on the account increasing the outstanding balance. The draw causes an increase in the utilization of the HELOC. Second, the homeowner may make only the required timely payment, C0 216, with only a small change in the outstanding balance. The payment results in only a small change for the utilization of the HELOC. Third, the homeowner may make a partially payoff, C" 218, reducing the outstanding balance. The payment results in a decrease in the utilization of the HELOC.
[0035] An account in state Dl 204 may remain in state Dl 204 simulating the event that the loan is still 30-59 days delinquent. The account may also transition to state D2 simulating the event that the loan is now 60-89 days delinquent. The account may transition to state P 212 simulating the event that the homeowner has paid off the entire loan balance. The account may also transition to state C 202 simulating the account owner has made a large enough payment to cover all outstanding payments due.
[0036] An account in state D2 206 may remain in state D2 206 simulating the event that the loan is still 60-89 days delinquent. The account may also transition to state D3 208 simulating the event that the loan is now 90-119 days delinquent. The account may transition to state P 212 simulating the event that the homeowner has paid off the entire loan balance. The account may also transition to state Dl 204 simulating the event that the homeowner has made a payment to cover the portion of the loan that is 60-89 days delinquent but has not paid enough to cover the portion of the loan that is 30-59 days delinquent. The account may also transition to state C 202 simulating the account owner has made a large enough payment to cover all outstanding payments due.
[0037] An account in state D3 208 may remain in state D3 208 simulating the event that the loan is still 90-1 19 days delinquent. The account may also transition to state D4 simulating the event that the loan is now 120- 179 days delinquent. The account may transition to state P 212 simulating the event that the homeowner has paid off the entire loan balance. The account may also transition to state D2 206 simulating the event that the homeowner has made a payment to cover the portion of the loan that is 90-119 days delinquent but has not paid enough to cover the portion of the loan that is 60-89 days delinquent. The account may also transition to state D 1 204 simulating the event that the homeowner has made a payment to cover the portion of the loan that is 90-119 days delinquent and any portion that is 60-89 days delinquent but has not paid enough to cover the portion of the loan that is 30-59 days delinquent. The account may also transition to state C 202 simulating the event that the homeowner has made a large enough payment to cover all outstanding payments due. The account may also transition to a charge off state L 220 indicating the lending institution does not expect repayment or has sold the debt to a collection agency.
[0038] An account in state D4 210 may remain in state D4 210 simulating the event that the loan is still 120-179 days delinquent. The account may transition to state P 212 simulating the event that the homeowner has paid off the entire loan balance. The account may also transition to state D3 208 simulating the event that the homeowner has made a payment to cover the portion of the loan that is delinquent 120- 179 days late but has not paid enough to cover the portion of the loan that is 90-119 days delinquent. The account may also transition to D2 206 simulating the event that the homeowner has made a payment to cover the portion of the loan that is delinquent 120- 179 days and any portion that is delinquent 90-1 19 days but has not paid enough to cover the portion of the loan that is 60-89 days delinquent. The account may also transition to state Dl 204 simulating the event that the homeowner has made a payment to cover the portion of the loan that is delinquent 120- 179 days, any portion that is delinquent 90-1 19 and any portion that is delinquent 60-89 days but has not paid enough to cover the portion of the loan that is 30 to 59 days delinquent. The account may also transition to state C 202 simulating that the homeowner has made a large enough payment to cover all outstanding payments due. The account may also transition to a charge off state L 220. [0039] An account in state P 212 may remain in state P 212 simulating the event that the HELOC is unused or currently paid off. The account may transition to state C 202 simulating an event that a customer draws on the HELOC. The account may also transition to state T 222 which simulates the event that the customer or the loan institution terminates the HELOC. It should be noted that an ongoing state P 212 is a unique line of credit loans. There is no loan but credit is available.
[0040] A charge off model independent of the state transition model may predict loss on an account given default. The model allows the calculation engine 102 to compute the magnitude of risk exposure over the prediction period.
[0041] The state transitions form the framework for propagation of the account state vector. The account state vector may be propagated forward in time using a random walk with the frame change probabilities based on the statistical transition model. The statistical transition model may include equations or equation coefficients generated from historic HELOC data. [0042] The computational engine 102 uses the statistical transition model to propagate the account state vector forward, prediction interval by prediction interval, in a Markov process generating account information at each prediction interval in the prediction period. The resulting series of account state vectors generated represents a snapshot of the account information of a single hypothetical account outcome at each time interval over the prediction period.
[0043] The computational engine 102 can repeat the propagation process many times (preferably thousands) generating numerous hypothetical account outcomes from the same initial account information. The ensemble of state vector series can be aggregated to estimate the probability distribution of outcomes for the account.
[0044] FIG. 3 is a flow diagram showing a method for predicting outcomes (e.g., determining the outcome probability distribution) of a HELOC loan. First, account characteristics of a HELOC account are input into or received by the computational engine 102 (S 302). The account characteristics include data used by the computational engine 102 to forecast default, delinquency, payments and draws. In various embodiments, the account characteristics may include location of the home (e.g. California), loan origination date, property value, occupancy (e.g. owner), junior ratio (limit/value), utilization at origination, balance at origination, term, back end ratio, prediction start date, index rate, margin, interest rates and home price index.
[0045] The computational engine 102 may generate an initial account state vector from the account characteristics (S 304). The state vector may include all information that is needed for the computational engine 102 to determine the probabilities of each state transition shown in FIG. 2. For example, the utilization rate may be a quantitative indicator of the probability of state transition. A homeowner who has maxed out (full utilization) his HELOC is more likely to default than a homeowner who has only utilized 10% of available credit. The initial state vector also has place holders for other quantitative indicators of the probability of state transition that may be acquired during the prediction period (e.g., a loan payment delinquency). An account that has numerous payment delinquencies is more likely to default than an account with no payment delinquencies.
[0046] Next, simulation parameters and assumptions are entered into or received by the computational engine 102 (S 306). For example, the loan prediction period, the prediction interval and the number of Monte Carlo trials can be entered or defaults accepted. For example, the user may want a very precise estimate of the month to month account outcome probabilities over the next five years. The user may choose a one month prediction interval, a five year prediction interval, and a robust number of trials, for example 10,000. [0047] The computational engine 102 may store the account state vector, the trial number and the prediction interval (S 308). If the computational engine 102 has no account state vector, trial number and prediction interval, the computational engine 102 stores the initial account state vector as the account state vector, a one for the trial number and a zero for the prediction interval.
[0048] The computational engine 102 updates the account state vector by propagating the state vector forward using the statistical transition models (S-310). The account state vector may propagate according to the state transition diagram in FIG. 2. The statistical transition models may contain the equations and coefficients necessary to determine the transition probabilities based on the information in the account state vector. If the current state vector is in state C, the computational engine 102 may use the statistical transition model to predict draw or payment events. A draw or payment may or may not be made. If a draw or payment is made, the statistical transition model may predict the size of the draw or payment. [0049] The computational engine 102 may increment the prediction interval counter (S 312). The prediction interval counter may be used by the calculation engine 102 to track which prediction interval the updated account state vector corresponds with. The computational engine 102 may test to see if the prediction interval corresponds with the end of the prediction period (S 314). If it does not, the computational engine 102 may return to S 308 to propagate the account state vector forward over the next interval. If the interval is the end of the prediction period, the computational engine 102 may increment the trial number (S 316).
[0050] The computational engine 102 may check to see if the trial number corresponds with the number of trials. If it does not, the computational engine 102 may save the initial account state vector as the account state vector and return to S 308 to begin a new account simulation trial. If the trial number corresponds with the final trial, a complete ensemble of account simulations has been generated with each account simulation in the ensemble having the same initial account information. [0051] The computational engine 102 may generate probability distributions and compute account statistics using the statistical transition models (S 320). The probability distributions and the account statistics may be presented to the user in a number of formats. [0052] FIGS. 4-12 show exemplary outputs 108 of the computational engine 102 of FIG. 1 or the method of FIG. 3. FIG. 4 shows the cumulative probability distribution function of the 60 day 402, 90 day 404, and 120 day 406 delinquencies and charge off 408 probabilities over a 60-month prediction period for an exemplary HELOC account. The X axis 410 shows discrete time intervals of the time period and the Y axis 412 shows the cumulative probabilities. Notably, the 60 day 402, 90 day 404 and 120 day 406 delinquencies and charge off 408 probabilities correspond respectively with state transitions to state D2 206, state D3 208, state D4 210 and state L 220 of the state transition model shown in FIG. 2. The cumulative delinquency probabilities monotonically increase until the end of the prediction period. The 60 day 402 delinquency probabilities are larger than the 90 day 404 delinquency probabilities which are larger than the 120 day 406 delinquency probabilities which are larger than the charge off delinquency probabilities.
[0053] FIG. 5 shows the probability of a new draw 502 or an additional draw 504 from an exemplary HELOC account over a 60-month prediction period. In contrast with FIG. 4, the probabilities are presented as probability densities and not as a cumulative distribution function. The X axis 506 shows discrete time intervals of the time period and the Y axis 508 shows the monthly probabilities. The probability of a new draw is highest at the time the HELOC account is opened. The need for a draw may have been the motivation for opening the account. Additional draws are also most common near the time the HELOC account is opened. One factor possibly motivating a homeowner to open a line of credit is that the homeowner is unsure of his prospective borrowing needs. Both the new draw and additional draw amounts probabilities appear to stabilize after a year. The homeowners borrowing needs one to five years after loan origination are likely to be largely random. [0054] FIG. 6 shows the monthly full payoff 602 and partial payoff probabilities 604 of an exemplary HELOC account. The X axis 604 shows discrete time intervals of the time period and the Y axis 608 shows the monthly probabilities. The prediction curves on this plot are not intuitive making the outcome probabilities more informative. In this case, the outcome probabilities provides a lending institution valuable information about the probability that HELOC loan will be paid off or partially paid off, ending or decreasing a profit stream. [0055] FIG. 7 shows the monthly utilization distribution quartiles of a hypothetical HELOC account. The X axis 702 shows discrete time intervals of the time period and the Y axis 704 shows the utilization rate. This plot provides a lending institute with important HELOC information. The utilization rate determines the outstanding HELOC balance and thus the revenue stream from the loan. The upper quartile shows 75l percentile probability of HELOC utilization while the lower quartile shows the 25th percentile probability of HELOC utilization.
[0056] FIGS. 8-9 together show the effects of two variables on account utilization, namely FICO scores and CLTV. In FIG. 8, the CLTV ratio is held fixed at 75% and the utilization rates for a 600 FICO score 802, a 650 FICO score 804, a 700 FICO score 806 and a 750 FICO score 808 are shown over the 60-month prediction period. In FIG. 9, the CLTV ratio is held fixed at 95% and the utilization rates for a 600 FICO score 902, a 650 FICO score 904, a 700 FICO score 906 and a 750 FICO score 908 are shown over the 60-month prediction period. The X axes 810, 910 show discrete time intervals of the time period and the Y axes 812, 912 show the utilization rate. The plots provide insight into the effect of FICO score on a utilization rate for a fixed CLTV and the effect of CLTV on utilization rate for a fixed FICO score. Notably, CLTV and FICO score are two of the best indicators of creditworthiness.
[0057] FIGS. 10-12 are plots showing the hypothetical effects of exogenous events on an exemplary HELOC account. This type of information is particularly useful for a lending institution to evaluate its risk exposure. FIGS. 10 and 11 show the effect a change in the prime lending rate would have on the charge off and payoff probabilities of a HELOC account. Once again, it is notable the charge off and payoff probabilities correspond to transitions to account states L 220 and P 212. It is also notable that the prediction periods along the X axes 1003, 1103 are 120 months. In FIG. 10, the cumulative distribution of charge offs is plotted along the Y axis 1004. In FIG. 11, the density of payoffs is plotted along the Y axis 1104. Each plot shows the effect of an interest rate change of 250 basis point upward 1004, 1 104, a change of 150 basis point upward 1006, 1 106, a change of 50 basis points upward 1008, 1108, no change 1010, 1110, a change of 50 basis points downward 1012, 1112, a change of 150 basis points downward 1014, 1114, and a change of 250 basis points downward 1016, 1116. These hypothetical scenarios provide lending institutions insight into their risk and profitability margins.
[0058] FIGS. 10-12 are plots showing the hypothetical effects of a housing price increase on a hypothetical HELOC account. The prediction period of 120 months is plotted along the X axis 1202 and the cumulative probability percentage is plotted along the Y axis 1204. The effect of no housing price increase 1206, a 10% increase 1208, and a 15% increase are shown. The plots confirm that an increase in housing prices decreases the probability of a HELOC charge off.
[0059] FIGS. 4-12 illustrate different ways of presenting data generated with the present invention. They are exemplary outputs 108 of the computational engine 102. Outputs 108 containing cumulative distribution functions, density functions, expected values, variances, skews and other statistics of each state variable, account parameter and data type are contemplated. Outputs 108 showing multiple random variable distributions and density functions as well as cross correlation, autocorrelation, and power spectral density statistics are also contemplated.
[0060] The various illustrative logical blocks and modules (e.g., the computational engine) described in connection with the examples disclosed herein may be implemented or performed in software, hardware, and combinations thereof with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
[0061] The steps of a method or algorithm described in connection with the examples disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an Application Specific Integrated Circuit (ASIC). The ASIC may reside in a wireless modem. In the alternative, the processor and the storage medium may reside as discrete components in the wireless modem.
[0062] The previous description of the disclosed examples is provided to enable any person of ordinary skill in the art to make or use the disclosed methods and apparatus. Various modifications to these examples will be readily apparent to those skilled in the art, and the principles defined herein may be applied to other examples without departing from the spirit or scope of the disclosed method and apparatus. The described embodiments are to be considered in all respects only as illustrative and not restrictive and the scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims

CLAIMS WHAT IS CLAIMED IS:
1. A machine-readable medium comprising instructions for predicting outcomes of a home equity line of credit loan, wherein the instructions upon execution cause a machine to: receive a plurality of account characteristics for a home equity line of credit loan; generate an initial account state vector from the plurality of account characteristics; receive a simulation parameter; update the initial account state vector by propagating a state vector forward using a statistical transition model; predict draw or payment events using the statistical transition model; and generate probability distributions and compute account statistics using the statistical transition model.
2. The machine-readable medium of claim 1 wherein the plurality of account characteristics are selected from a group consisting of a location of a home, a loan origination date, a property value, an occupancy type, a junior ratio, a utilization at origination, a balance at origination, a term, a back end ratio, a prediction start date, an index rate, a margin, an interest rate, a home price index, and combinations thereof.
3. The machine-readable medium of claim 1 wherein the initial account state vector includes information that is used to determine at least one probability for each state transition.
4. The machine-readable medium of claim 1 wherein the simulation parameter is selected from a group consisting of a loan prediction period, a prediction interval, a number of Monte Carlo trials, and combinations thereof.
5. The machine-readable medium of claim 4 further comprising instructions that upon execution cause a machine to store an account state vector, the number of Monte Carlo trials, and the prediction interval.
6. The machine-readable medium of claim 5 further comprising instructions that upon execution cause a machine to store the initial account state vector as the account state vector, a 1 for the number of Monte Carlo trials, and a 0 for the prediction interval if no account state vector, trial number and prediction interval exist.
7. The machine-readable medium of claim 1 wherein the statistical transition model includes equations and coefficients to determine transition probabilities based on the information in the account state vector.
8. A computer-based method for predicting outcomes of a home equity line of credit loan comprising: receiving a plurality of account characteristics for a home equity line of credit loan; generating an initial account state vector from the plurality of account characteristics; receiving a simulation parameter; updating the initial account state vector by propagating a state vector forward using a statistical transition model; predicting draw or payment events using the statistical transition model; and generating probability distributions and compute account statistics using the statistical transition model.
9. The method of claim 8 wherein the plurality of account characteristics are selected from a group consisting of a location of a home, a loan origination date, a property value, an occupancy type, a junior ratio, a utilization at origination, a balance at origination, a term, a back end ratio, a prediction start date, an index rate, a margin, an interest rate, a home price index, and combinations thereof.
10. The method of claim 8 wherein the initial account state vector includes information that is used to determine at least one probability for each state transition.
11. The method of claim 8 wherein the simulation parameter is selected from a group consisting of a loan prediction period, a prediction interval, a number of Monte Carlo trials, and combinations thereof.
12. The method of claim 11 further comprising storing an account state vector, the number of Monte Carlo trials, and the prediction interval.
13. The method of claim 12 further comprising storing the initial account state vector as the account state vector, a 1 for the number of Monte Carlo trials, and a 0 for the prediction interval if no account state vector, trial number and prediction interval exist.
14. The method of claim 8 wherein the statistical transition model includes equations and coefficients to determine transition probabilities based on the information in the account state vector.
15. A computer-based method for forecasting possible outcomes of a home equity line of credit (HELOC) comprising: generating a HELOC account simulation model having a plurality of possible account states; receiving account information for seeding a simulation; simulating an outcome by seeding the simulation with account information and iteratively predicting a next account state from the plurality of possible account states using the HELOC account simulation model; generating an ensemble of simulated outcomes; and aggregating the outcome ensemble into one or more probability statistics.
16. The method of claim 15 wherein the account information is selected from a group consisting of a loan balance, a CLTV ratio, an interest rate, a home price, a delinquency, and combinations thereof.
17. A method for estimating the expected return from a home equity line of credit (HELOC) account comprising: generating a statistical model from historic HELOC data; receiving account information about a prospective HELOC; comparing the account information with the statistical model; and predicting loan balance statistics from the comparison.
18. The method of claim 17 wherein the account information is selected from a group consisting of a loan balance, a CLTV ratio, an interest rate, a home price, a delinquency, and combinations thereof.
19. A method for calculating the utilization statistics of a home equity line of credit (HELOC) using Monte Carlo methods, comprising: generating a statistical transition model of possible HELOC account states; receiving HELOC account data; simulating a plurality of possible account outcomes by seeding the statistical transition model with HELOC account data; and generating one or more probability statistics from the plurality of possible account outcomes.
20. The method of claim 19 wherein the HELOC account data is selected from a group consisting of a loan balance, a CLTV ratio, an interest rate, a home price, a delinquency, and combinations thereof.
PCT/US2007/072682 2025-08-07 2025-08-07 Method and apparatus for predicting outcomes of a home equity line of credit WO2008014089A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81784506P 2025-08-07 2025-08-07
US60/817,845 2025-08-07

Publications (2)

Publication Number Publication Date
WO2008014089A2 true WO2008014089A2 (en) 2025-08-07
WO2008014089A3 WO2008014089A3 (en) 2025-08-07

Family

ID=38982184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/072682 WO2008014089A2 (en) 2025-08-07 2025-08-07 Method and apparatus for predicting outcomes of a home equity line of credit

Country Status (2)

Country Link
US (1) US7958048B2 (en)
WO (1) WO2008014089A2 (en)

Cited By (1)

* Cited by examiner, ? Cited by third party
Publication number Priority date Publication date Assignee Title
CN110400209A (en) * 2025-08-07 2025-08-07 上海上湖信息技术有限公司 Determination method and device, storage medium, the terminal of user credit

Families Citing this family (23)

* Cited by examiner, ? Cited by third party
Publication number Priority date Publication date Assignee Title
US7778900B2 (en) * 2025-08-07 2025-08-07 Sap Ag Method and software application for computer-aided cash collection
US7587348B2 (en) * 2025-08-07 2025-08-07 Basepoint Analytics Llc System and method of detecting mortgage related fraud
US7966256B2 (en) 2025-08-07 2025-08-07 Corelogic Information Solutions, Inc. Methods and systems of predicting mortgage payment risk
US20090063311A1 (en) * 2025-08-07 2025-08-07 Bank Of America Corporation Adjusted Net Income
US20090222380A1 (en) * 2025-08-07 2025-08-07 American Express Travel Related Services Company, Inc Total structural risk model
US20090222373A1 (en) * 2025-08-07 2025-08-07 American Express Travel Related Services Company, Inc. Total structural risk model
US7853520B2 (en) * 2025-08-07 2025-08-07 American Express Travel Related Services Company, Inc. Total structural risk model
US20090222378A1 (en) * 2025-08-07 2025-08-07 American Express Travel Related Services Company, Inc. Total structural risk model
US8458083B2 (en) * 2025-08-07 2025-08-07 American Express Travel Related Services Company, Inc. Total structural risk model
US7849004B2 (en) 2025-08-07 2025-08-07 American Express Travel Related Services Company, Inc. Total structural risk model
US20090222376A1 (en) * 2025-08-07 2025-08-07 American Express Travel Related Services Company, Inc. Total structural risk model
US8078569B2 (en) * 2025-08-07 2025-08-07 Fair Isaac Corporation Estimating transaction risk using sub-models characterizing cross-interaction among categorical and non-categorical variables
US20100082384A1 (en) * 2025-08-07 2025-08-07 American Express Travel Related Services Company, Inc. Systems and methods for comprehensive consumer relationship management
US8543494B2 (en) * 2025-08-07 2025-08-07 Bank Of America Corporation Shared appreciation loan modification system and method
US8452681B2 (en) * 2025-08-07 2025-08-07 Thomson Financial, LLC System and method for improved rating and modeling of asset backed securities
US8285568B1 (en) * 2025-08-07 2025-08-07 Pricelock Finance, Llc Home resale price protection plan
JP5764942B2 (en) * 2025-08-07 2025-08-07 富士通株式会社 Information collation device, information collation system, information collation method, and information collation program
US9792653B2 (en) * 2025-08-07 2025-08-07 Opera Solutions U.S.A., Llc Recommender engine for collections treatment selection
US20130226777A1 (en) * 2025-08-07 2025-08-07 Mastercard International Incorporated Apparatus, method, and computer program product for credit card profitability scoring
US20140279386A1 (en) * 2025-08-07 2025-08-07 Leslie Meyer Methods and system for mining and analyzing real estate information
CN109522340B (en) * 2025-08-07 2025-08-07 北京神州绿盟信息安全科技股份有限公司 Data statistical method, device and equipment
US11094135B1 (en) 2025-08-07 2025-08-07 Flyreel, Inc. Automated measurement of interior spaces through guided modeling of dimensions
US20220414763A1 (en) * 2025-08-07 2025-08-07 Affirm, Inc. System, Method and Apparatus for Modeling Loan Transitions

Family Cites Families (31)

* Cited by examiner, ? Cited by third party
Publication number Priority date Publication date Assignee Title
US5884287A (en) * 2025-08-07 2025-08-07 Lfg, Inc. System and method for generating and displaying risk and return in an investment portfolio
US6249775B1 (en) * 2025-08-07 2025-08-07 The Chase Manhattan Bank Method for mortgage and closed end loan portfolio management
US20020035530A1 (en) * 2025-08-07 2025-08-07 Michael A. Ervolini Computer system and process for a credit-driven analysis of asset-backed securities
WO1999048036A1 (en) * 2025-08-07 2025-08-07 Iq Financial Systems, Inc. System, method, and computer program product for assessing risk within a predefined market
US7003491B2 (en) * 2025-08-07 2025-08-07 General Electric Capital Corporation Methods and systems for a collections model for loans
US7277869B2 (en) * 2025-08-07 2025-08-07 General Electric Capital Corporation Delinquency-moving matrices for visualizing loan collections
US7310618B2 (en) 2025-08-07 2025-08-07 Lehman Brothers Inc. Automated loan evaluation system
WO2002029521A2 (en) * 2025-08-07 2025-08-07 American Express Company System methods and computer program products for offering consumer loans having customized terms for each customer
US20050262013A1 (en) 2025-08-07 2025-08-07 Guthner Mark W System and method for analyzing risk and profitability of non-recourse loans
US6642127B2 (en) * 2025-08-07 2025-08-07 Applied Materials, Inc. Method for dicing a semiconductor wafer
US20030078878A1 (en) 2025-08-07 2025-08-07 Opsahl-Ong Lorinda R. Systems and methods for evaluating commercial real estate property using stochastic vacancy information
US20030110122A1 (en) * 2025-08-07 2025-08-07 Nalebuff Barry J. Home equity insurance financial product
US7630932B2 (en) * 2025-08-07 2025-08-07 Transunion Interactive, Inc. Loan rate and lending information analysis system
US7324970B2 (en) * 2025-08-07 2025-08-07 Wells Fargo Bank, N.A. Home asset management account
US7451065B2 (en) * 2025-08-07 2025-08-07 International Business Machines Corporation Method for constructing segmentation-based predictive models
WO2003096147A2 (en) * 2025-08-07 2025-08-07 Zoot Enterprises, Inc. System and method of application processing
JP2004078435A (en) * 2025-08-07 2025-08-07 Ibm Japan Ltd Risk management device, risk management system, risk management method, future expected profit calculation method, and program
US20040153330A1 (en) * 2025-08-07 2025-08-07 Fidelity National Financial, Inc. System and method for evaluating future collateral risk quality of real estate
JP2004326329A (en) 2025-08-07 2025-08-07 Bank Of Tokyo-Mitsubishi Ltd Deposit/loan balance degradation risk evaluation system and method, computer program, and program recording medium
US20050010509A1 (en) 2025-08-07 2025-08-07 Straub Russell Andrew Response management device providing statistical tracking of contacts
US7801789B1 (en) * 2025-08-07 2025-08-07 Jpmorgan Chase Bank, N.A. Stabilized monte carlo technique and method and system of applying same to valuate assets including derivative securities
NZ551492A (en) * 2025-08-07 2025-08-07 Etracka Pty Ltd Loan simulation method and system
US7296734B2 (en) 2025-08-07 2025-08-07 Robert Kenneth Pliha Systems and methods for scoring bank customers direct deposit account transaction activity to match financial behavior to specific acquisition, performance and risk events defined by the bank using a decision tree and stochastic process
US20060059073A1 (en) 2025-08-07 2025-08-07 Walzak Rebecca B System and method for analyzing financial risk
US7610243B2 (en) 2025-08-07 2025-08-07 American Express Travel Related Services Company, Inc. Method and apparatus for rating asset-backed securities
US20060195391A1 (en) 2025-08-07 2025-08-07 Stanelle Evan J Modeling loss in a term structured financial portfolio
US20060224499A1 (en) 2025-08-07 2025-08-07 First American Real Estate Solutions, L.P. Method and apparatus for computing a loan quality score
US7853518B2 (en) 2025-08-07 2025-08-07 Corelogic Information Solutions, Inc. Method and apparatus for advanced mortgage diagnostic analytics
US20060287947A1 (en) 2025-08-07 2025-08-07 Toms Alvin D Non-payment risk assessment
JP4398916B2 (en) 2025-08-07 2025-08-07 株式会社東芝 Probabilistic model generation apparatus and program
US7689494B2 (en) * 2025-08-07 2025-08-07 Advisor Software Inc. Simulation of portfolios and risk budget analysis

Cited By (1)

* Cited by examiner, ? Cited by third party
Publication number Priority date Publication date Assignee Title
CN110400209A (en) * 2025-08-07 2025-08-07 上海上湖信息技术有限公司 Determination method and device, storage medium, the terminal of user credit

Also Published As

Publication number Publication date
US7958048B2 (en) 2025-08-07
US20080010188A1 (en) 2025-08-07
WO2008014089A3 (en) 2025-08-07

Similar Documents

Publication Publication Date Title
US7958048B2 (en) Method and apparatus for predicting outcomes of a home equity line of credit
US20040015376A1 (en) Method and system to value projects taking into account political risks
US7720761B2 (en) Method and system for enhancing credit line management, price management and other discretionary levels setting for financial accounts
US7437326B2 (en) Securities trading simulation
US20150058260A1 (en) System for Modeling Risk Valuations for a Financial Institution
WO2011109576A1 (en) System and methods for management of real property and for comparing real properties for purchase
CN105393274A (en) An insurance product, rating and credit enhancement system and method for insuring project savings
Giesecke et al. Risk analysis of collateralized debt obligations
US10282781B2 (en) Data analytics database and platform system and method
Sabat et al. Rules of thumb in household savings decisions: Estimation using threshold regression
US20040103052A1 (en) System and method for valuing investment opportunities using real options, creating heuristics to approximately represent value, and maximizing a portfolio of investment opportunities within specified objectives and constraints
US7933796B1 (en) Method of and system for evaluating credit risk associated with a financial asset
US20220300872A1 (en) Data-Monetization Information Management System and Method
US12288014B1 (en) Systems and methods for predictive modeling
RU2246134C2 (en) Automated information and analysis system for estimating financial risks
US20180246992A1 (en) Multiple Time-Dimension Simulation Models and Lifecycle Dynamic Scoring System
Evans et al. The application of Monte Carlo simulation in finance, economics and operations management
RU2212706C2 (en) Method for estimating financial risks
Yüzba??o?lu Securitization based on reverse mortgage in financial markets
Smith et al. Citibank models credit risk on hybrid mortgage loans in Taiwan
Henningsson et al. A framework for modeling the liquidity and interest rate risk of demand deposits
Tessiore et al. V. PROJECT FINANCE–A MONTE CARLO APPROACH TO ESTIMATE PROBABILITY OF DEFAULT, LOSS GIVEN DEFAULT AND EXPECTED LOSS
Donchev Modeling defaults in residential mortgage backed securities: An intensity based approach
EP1436740A1 (en) System and method for analyzing risk and profitability of non-recourse loans
KR100587522B1 (en) Design and Simulation System of Housing Mortgage Securities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application 百度 《北京市共有产权住房管理暂行办法》也明确规定,购买共有产权住房的,购房人可以按照政策性住房有关贷款规定申请住房公积金、商业银行等购房贷款。

Ref document number: 07812563

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07812563

Country of ref document: EP

Kind code of ref document: A2

周易和易经有什么区别 为什么说婴儿摔床没事 10a是什么意思 线下培训是什么意思 胃反酸吃什么药
下午4点是什么时辰 榴莲皮可以做什么 血糖高可以吃什么零食 sr是什么意思 嗓子痛吃什么药好得快
地西泮又叫什么 胆固醇高不可以吃什么 头晕是什么症状引起的 水痘不能吃什么食物 套作是什么意思
大姨妈能吃什么水果 养兰花用什么土最好 什么是焦虑症 中学校长什么级别 教皇是什么意思
什么叫射频消融hcv9jop0ns1r.cn 格格不入什么意思zsyouku.com mommy什么意思hcv9jop7ns5r.cn 心脏病吃什么水果最好clwhiglsz.com 贞操锁是什么sanhestory.com
警察和公安有什么区别hcv8jop4ns1r.cn 血细胞分析能查出什么fenrenren.com 白介素是什么hcv7jop9ns4r.cn 病毒性肠胃炎吃什么药hcv9jop4ns4r.cn 痛风忌口不能吃什么东西hcv7jop5ns3r.cn
溶豆是什么hcv7jop7ns4r.cn 天降甘霖什么意思hcv8jop2ns2r.cn 足月是什么意思hcv8jop5ns8r.cn 睡不着有什么好办法吗hcv9jop0ns5r.cn 耳石症是什么原因引起的1949doufunao.com
荷花和莲花有什么区别hcv9jop6ns9r.cn 龟头有白色污垢是什么hcv8jop8ns2r.cn 百年好合是什么意思hcv8jop8ns6r.cn 繁星是什么意思gangsutong.com 白羊座的幸运色是什么hcv9jop3ns3r.cn
百度