天眼晚报:银监会主席助理杨家才失联 曾称参与非集要
Distributing cloud-computing platform content to enterprise threat detection systems Download PDFInfo
- Publication number
- US20180176235A1 US20180176235A1 US15/383,771 US201615383771A US2018176235A1 US 20180176235 A1 US20180176235 A1 US 20180176235A1 US 201615383771 A US201615383771 A US 201615383771A US 2018176235 A1 US2018176235 A1 US 2018176235A1
- Authority
- US
- United States
- Prior art keywords
- etd
- content
- computer
- client
- service
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 17
- 238000011161 development Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 44
- 230000008676 import Effects 0.000 claims description 7
- 230000015654 memory Effects 0.000 description 16
- 238000012545 processing Methods 0.000 description 14
- 238000004891 communication Methods 0.000 description 11
- 238000004590 computer program Methods 0.000 description 11
- 238000007726 management method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000012546 transfer Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 230000009471 action Effects 0.000 description 4
- 239000008186 active pharmaceutical agent Substances 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 230000009118 appropriate response Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000013515 script Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- WVCHIGAIXREVNS-UHFFFAOYSA-N 2-hydroxy-1,4-naphthoquinone Chemical compound C1=CC=C2C(O)=CC(=O)C(=O)C2=C1 WVCHIGAIXREVNS-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1408—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
- H04L63/1416—Event detection, e.g. attack signature detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1408—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
- H04L63/1425—Traffic logging, e.g. anomaly detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1433—Vulnerability analysis
Definitions
- ETD Enterprise threat detection
- big data The collected log data is usually analyzed using forensic-type data analysis tools to identify suspicious behavior and to allow an appropriate response.
- ETD systems have typically not been fully compatible or efficiently integrated with cloud computing systems.
- the present disclosure describes methods and systems, including computer-implemented methods, computer program products, and computer systems for distributing cloud computing platform content to enterprise threat detection (ETD) systems.
- ETD enterprise threat detection
- a Content Service executing in a cloud-computing-based Cloud Platform receives enterprise threat detection (ETD) Content transmitted from an ETD Content Development System (CDS) as a publication of the ETD Content from the ETD CDS.
- ETD Content is stored into a Content Management System (CMS).
- CMS Content Management System
- the ETD Content is published to the registered Client ETD System.
- the above-described implementation is implementable using a computer-implemented method; a non-transitory, computer-readable medium storing computer-readable instructions to perform the computer-implemented method; and a computer-implemented system comprising a computer memory interoperably coupled with a hardware processor configured to perform the computer-implemented method/the instructions stored on the non-transitory, computer-readable medium.
- client administrators do not have to log into a service marketplace to discover where new ETD Security Notes and associated Content files have been published.
- client administrators do not need to determine whether the published new ETD Security Notes and associated Content files are applicable to their information technology (IT) landscapes (including ETD systems).
- IT information technology
- new ETD Content can be automatically published to a cloud-computing-based Content Service.
- Client ETD Systems can register for published ETD Content applicable to their Client ETD System. When new ETD Content applicable to their Client ETD System is published, the Content Service can publish the new ETD Content to the Client ETD System. The published new ETD Content can also be automatically integrated into the Client ETD System.
- FIG. 1 is a block diagram illustrating an example distributed computing system (EDCS) for providing enterprise threat detection (ETD) content using a cloud-computing platform Content Service, according to an implementation.
- EDCS distributed computing system
- FIG. 2 is a flowchart illustrating an example method for providing ETD Content using a cloud-computing platform Content Service, according to an implementation.
- FIG. 3 is a block diagram illustrating an exemplary computer system used to provide computational functionalities associated with described algorithms, methods, functions, processes, flows, and procedures as described in the instant disclosure, according to an implementation.
- ETD typically collects and stores a large amount/large sets of log data associated with various heterogeneous systems (often referred to as “big data”). The collected log data is usually analyzed using forensic-type data analysis tools to identify suspicious behavior and to allow an appropriate response.
- big data often referred to as “big data”.
- the collected log data is usually analyzed using forensic-type data analysis tools to identify suspicious behavior and to allow an appropriate response.
- ETD systems have typically not been fully compatible or efficiently integrated with cloud computing systems.
- Security Notes For example, published ETD Security Notes (hereinafter “Security Notes”) reveal discovered weaknesses in client information technology (IT) landscapes (including client ETD systems).
- IT information technology
- the Security Notes are typically made available on a service marketplace (for example, SAP Service Marketplace), and it is each client's administrative responsibility to monitor the service marketplace and update their particular IT landscape based on information in the Security Notes.
- client IT landscapes are not updated within a reasonable time from publication of the Security Notes to mitigate or eliminate exposure to potential exploits revealed by the discovered security weaknesses.
- One primary reason is that it is often mandatory to disable an IT landscape server(s) to perform security updates, update software revisions, etc.
- the downtime reduces productiveness of the client IT landscapes, is often prohibited by business realities, and encourages clients to perform scheduled security updates/servicing as opposed to updating at a point-in-time when security weaknesses are discovered.
- ETD systems currently provide a “virtual patching service” which provides updated ETD detection “patterns” (used to detect event anomalies in IT landscapes) contemporaneously with Security Notes that can be used by a client to detect possible malicious activities in their IT landscape until their particular IT landscape is updated to mitigate or eliminate the discovered security weaknesses. Clients receive the updated ETD Patterns and manually update their ETD systems to incorporate the updated ETD detection capabilities. If a security breach/exploit is discovered prior to a scheduled update of an IT landscape, mitigation actions can be taken at that time.
- the virtual patching service can be seen as a “shelter-in-place” strategy.
- Using the virtual patching service provides clients an overlook of known security risks pertaining to the client IT landscape. Additionally, clients do not need to disable their IT landscape every time a security weakness is discovered, so client IT landscape productivity remains high. Clients can also determine, based on their unique business circumstances, cost effectiveness vs. risk with respect to scheduling implementation of ETD security updates for identified weak points in their IT landscape.
- Described is a cloud-computing platform Content Service that delivers ETD Content applicable to a particular client IT landscape which can be consumed by an ETD system in the particular client IT landscape.
- the provided ETD Content typically contains Security Notes and Content Files.
- Content Files can include ETD Patterns or other content useful for ETD purposes, etc.
- the generated ETD Content is typically reprocessed (for example, into JSON or other file formats) for storage by Content Service into a data store and transfer by the Content Service from the data store to a Client ETD system.
- a Client ETD System will only receive Security Notes and Content Files relevant for the client IT landscape.
- a Security Note and associated Content File is considered relevant if related corrections are not yet included in a particular version of systems/software (including the Client ETD System) associated with the client IT landscape.
- FIG. 1 is a block diagram illustrating an example distributed computing system (EDCS) 100 for providing enterprise threat detection (ETD) content using a cloud-computing platform Content Service, according to an implementation.
- the EDCS 100 includes an ETD Content Development System (CDS) 102 , cloud-computing-based Cloud Platform 104 , and Client ETD System 106 , connected using network 130 .
- the Cloud Platform 104 contains a Content Service 108 and a Content Management System (CMS) 110 .
- CMS Content Management System
- the Client ETD System 106 contains an ETD Content Importer Service (CIS) 112 .
- the different network 130 connections can each represent an independent network (for example, the ETD CDS 102 can be connect to the Cloud Platform 104 with a network that is independent of the network used to connect the Client ETD System 106 to the Cloud Platform 104 .
- ETD Content is obtained by the ETD CDS 102 from databases (not illustrated) containing information related to discovered security weaknesses, threats, and the like.
- the ETD CDS 102 is configured to permit ETD Content to be developed, edited/updated, and published to the Content Service 108 executing on the Cloud Platform 104 . Publication can include both push- and pull-type content delivery.
- saving/updating ETD Content on the ETD CDS 102 can trigger ETD Content synchronization (that is, automatic publication) of the ETD Content to the Content Service 108 or a notification (for example, send to an administrator of the ETD CDS 102 ) that the saved/updated ETD Content needs to be published to the Content Service 108 .
- the ETD CDS 102 can be configured to provide tools for development, editing/updating, and publication of ETD Content (for example, using graphical user interface (GUI) tools).
- GUI graphical user interface
- the Content Service 108 contains an Administrative Application Programming Interface (API) 114 and a Public API 116 .
- the Administrative API 112 and Public API 114 can be implemented as representational state transfer (REST) APIs.
- the Content Service 108 is implemented as a REST service.
- the Administrative API 114 is configured to be secure (for example, accessible by users with particular defined roles—such as “etd-admin” or other defined role) and is provided to permit secure transfer of ETD Content to the Content Service 108 for storage.
- the Public API 116 is provided to permit access and retrieval of the ETD Content for consumption by the Client ETD System 106 .
- the stored ETD Content is accessible using the Public API 116 without credentials.
- the Content Service 108 is coded in the JAVA programming language using JAX-RS JAVA APIs for RESTful Web services and the APACHE CXF Web services framework.
- CMS Content Management System
- CMIS Content Management Interoperability Services
- a network 130 connection configured between the ETD CDS 102 and the Administrative API 114 is configured to be READ/WRITE, permitting administrators to manage ETD Content in the CMS 110 and Content Service 108 configuration.
- a network 130 connection configured between the ETD CIS 112 and the Public API 116 is configured to be READ only, to preserve security related to the Content Service 108 and other connected components of the EDCS 100 .
- connections between the ETD CDS 102 , ETD CIS 112 , and the applicable APIs of the Content Platform 104 are configured to use the Hypertext Transfer Protocol/Secure (HTTPS) protocol.
- HTTPS Hypertext Transfer Protocol/Secure
- the Content Service 108 can be used to update Client ETD Systems with updated ETD Patterns. For example, a relationship can be configured between new Security Notes and associated ETD Patterns.
- the ETD CIS 112 can register with the Content Service 108 through a request to receive new ETD Content).
- the Content Service can determine which Client ETD System(s) the new Security Notes and associated ETD Patterns (as Content Files) are applicable to, and can publish the ETD Content to applicable ETD CIS 112 s .
- the associated ETD Patterns can be automatically integrated into the Client ETD System 106 .
- This described configuration would permit rapid dissemination and integration of new Security Notes and associated ETD Patterns to Client ETD Systems 106 to help perform automatic, proactive “virtual patching” of the Client ETD System 106 .
- the Content Service 108 can act as a pre-notify service to update Client ETD Systems 106 with updated ETD Patterns prior to client awareness of the update.
- the ETD CIS 112 is configured to read new ETC content from the Content Service 108 using the Public API 114 .
- the ETD CIS 112 is configured as an extension of the Client ETD System 106 database (not illustrated).
- the database is an in-memory database (such as SAP HANA).
- SAP HANA SAP HANA
- the ETD CIS 112 is configured to consume the Content Service 108 .
- the ETD CIS 112 is written in JAVASCRIPT.
- ETD Content (Security Notes and Content Files) is reformatted by the ETD CDS 102 prior to transfer to the Content Service 108 (for example, as JSON files) and written to the CMS 110 .
- Content Files can be “assigned” to Security Notes using various attributes.
- the Content Service 108 signs the ETD Content with an ETD private key of the ETD CDS 102 .
- the receiving Client ETD System 106 validates the ETD private key signature with an ETD public key.
- an example Content File (as an ETD Pattern) can resemble:
- the example Content File includes one item (here IDs “A0A1” that is linked to associated Security Notes through JSON attribute “noteNumbers”: [4711, 4712].” Affected ETD version for the item is stored in the JSON attribute “version” (here “1.0” for item “A0A1”).
- version here “1.0” for item “A0A1”.
- Security Notes can contain, among other things:
- FIG. 2 is a flowchart of an example method 200 for distributing cloud computing platform content to ETD systems, according to an implementation.
- method 200 may be performed, for example, by any suitable system, environment, software, and hardware, or a combination of systems, environments, software, and hardware as appropriate.
- various steps of method 200 can be run in parallel, in combination, in loops, or in any order.
- ETD Content is transmitted from an ETD Content Development System (CDS) as a publication of the ETD Content from the ETD CDS to a Content Service executing in a cloud-computing-based Cloud Platform.
- the received ETD Content includes Security Notes and Content Files.
- Content Files can include ETD Patterns or other content useful for ETD purposes.
- the ETD Content is received by a Content Service secure administrative API. From 202 , method 200 proceeds to 204 .
- the received ETD Content is stored into a Content Management System (CMS) executing in the Cloud Platform.
- CMS Content Management System
- storing the received ETD Content includes reformatting the ETD Content for storage into the CMS. From 204 , method 200 proceeds to 206 .
- a registered Client ETD System for which the ETD Content is applicable is determined.
- a registration is received for ETD Content from an ETD Client Import Service (CIS) executing on the Client ETD System.
- the ETD CIS connects to the Content Service using a public API. From 206 , method 200 proceeds to 208 .
- the ETD Content is published to the registered Client ETD System.
- the published ETD Content received by the ETD CIS is integrated into the Client ETD System.
- the integration can be configured to be automatically performed.
- FIG. 3 is a block diagram of an exemplary computer system 300 used to provide computational functionalities associated with described algorithms, methods, functions, processes, flows, and procedures as described in the instant disclosure, according to an implementation.
- the illustrated computer 302 is intended to encompass any computing device such as a server, desktop computer, laptop/notebook computer, wireless data port, smart phone, personal data assistant (PDA), tablet computing device, one or more processors within these devices, or any other suitable processing device, including both physical or virtual instances (or both) of the computing device.
- PDA personal data assistant
- the computer 302 may comprise a computer that includes an input device, such as a keypad, keyboard, touch screen, or other device that can accept user information, and an output device that conveys information associated with the operation of the computer 302 , including digital data, visual, or audio information (or a combination of information), or a graphical user interface (GUI).
- an input device such as a keypad, keyboard, touch screen, or other device that can accept user information
- an output device that conveys information associated with the operation of the computer 302 , including digital data, visual, or audio information (or a combination of information), or a graphical user interface (GUI).
- GUI graphical user interface
- the computer 302 can serve in a role as a client, network component, a server, a database or other persistency, or any other component (or a combination of roles) of a computer system for performing the subject matter described in the instant disclosure.
- the illustrated computer 302 is communicably coupled with a network 330 .
- one or more components of the computer 302 may be configured to operate within environments, including cloud-computing-based, local, global, or other environment (or a combination of environments).
- the computer 302 is an electronic computing device operable to receive, transmit, process, store, or manage data and information associated with the described subject matter. According to some implementations, the computer 302 may also include or be communicably coupled with an application server, e-mail server, web server, caching server, streaming data server, or other server (or a combination of servers).
- an application server e-mail server, web server, caching server, streaming data server, or other server (or a combination of servers).
- the computer 302 can receive requests over network 330 from a client application (for example, executing on another computer 302 ) and responding to the received requests by processing the said requests in an appropriate software application.
- requests may also be sent to the computer 302 from internal users (for example, from a command console or by other appropriate access method), external or third-parties, other automated applications, as well as any other appropriate entities, individuals, systems, or computers.
- Each of the components of the computer 302 can communicate using a system bus 303 .
- any or all of the components of the computer 302 may interface with each other or the interface 304 (or a combination of both) over the system bus 303 using an application programming interface (API) 312 or a service layer 313 (or a combination of the API 312 and service layer 313 ).
- the API 312 may include specifications for routines, data structures, and object classes.
- the API 312 may be either computer-language independent or dependent and refer to a complete interface, a single function, or even a set of APIs.
- the service layer 313 provides software services to the computer 302 or other components (whether or not illustrated) that are communicably coupled to the computer 302 .
- the functionality of the computer 302 may be accessible for all service consumers using this service layer.
- Software services, such as those provided by the service layer 313 provide reusable, defined functionalities through a defined interface.
- the interface may be software written in JAVA, C++, or other suitable language providing data in extensible markup language (XML) format or other suitable format.
- XML extensible markup language
- alternative implementations may illustrate the API 312 or the service layer 313 as stand-alone components in relation to other components of the computer 302 or other components (whether or not illustrated) that are communicably coupled to the computer 302 .
- any or all parts of the API 312 or the service layer 313 may be implemented as child or sub-modules of another software module, enterprise application, or hardware module without departing from the scope of this disclosure.
- the computer 302 includes an interface 304 . Although illustrated as a single interface 304 in FIG. 3 , two or more interfaces 304 may be used according to particular needs, desires, or particular implementations of the computer 302 .
- the interface 304 is used by the computer 302 for communicating with other systems in a distributed environment that are connected to the network 330 (whether illustrated or not).
- the interface 304 comprises logic encoded in software or hardware (or a combination of software and hardware) and operable to communicate with the network 330 . More specifically, the interface 304 may comprise software supporting one or more communication protocols associated with communications such that the network 330 or interface's hardware is operable to communicate physical signals within and outside of the illustrated computer 302 .
- the computer 302 includes a processor 305 . Although illustrated as a single processor 305 in FIG. 3 , two or more processors may be used according to particular needs, desires, or particular implementations of the computer 302 . Generally, the processor 305 executes instructions and manipulates data to perform the operations of the computer 302 and any algorithms, methods, functions, processes, flows, and procedures as described in the instant disclosure.
- the computer 302 also includes a database 306 that can hold data for the computer 302 or other components (or a combination of both) that can be connected to the network 330 (whether illustrated or not).
- database 306 can be an in-memory, conventional, or other type of database storing data consistent with this disclosure.
- database 306 can be a combination of two or more different database types (for example, a hybrid in-memory and conventional database) according to particular needs, desires, or particular implementations of the computer 302 and the described functionality.
- two or more databases can be used according to particular needs, desires, or particular implementations of the computer 302 and the described functionality.
- database 306 is illustrated as an integral component of the computer 302 , in alternative implementations, database 306 can be external to the computer 302 .
- the database 306 holds a Security Note 314 and a Content File 316 as described above.
- the computer 302 also includes a memory 307 that can hold data for the computer 302 or other components (or a combination of both) that can be connected to the network 330 (whether illustrated or not).
- memory 307 can be random access memory (RAM), read-only memory (ROM), optical, magnetic, and the like storing data consistent with this disclosure.
- memory 307 can be a combination of two or more different types of memory (for example, a combination of RAM and magnetic storage) according to particular needs, desires, or particular implementations of the computer 302 and the described functionality.
- two or more memories 307 can be used according to particular needs, desires, or particular implementations of the computer 302 and the described functionality. While memory 307 is illustrated as an integral component of the computer 302 , in alternative implementations, memory 307 can be external to the computer 302 .
- the application 308 is an algorithmic software engine providing functionality according to particular needs, desires, or particular implementations of the computer 302 , particularly with respect to functionality described in this disclosure.
- application 308 can serve as one or more components, modules, applications, etc.
- the application 308 may be implemented as multiple applications 308 on the computer 302 .
- the application 308 can be external to the computer 302 .
- computers 302 there may be any number of computers 302 associated with, or external to, a computer system containing computer 302 , each computer 302 communicating over network 330 .
- client the term “client,” “user,” and other appropriate terminology may be used interchangeably as appropriate without departing from the scope of this disclosure.
- this disclosure contemplates that many users may use one computer 302 , or that one user may use multiple computers 302 .
- Described implementations of the subject matter can include one or more features, alone or in combination.
- a computer-implemented method comprising: receiving, with a Content Service executing in a cloud-computing-based Cloud Platform, enterprise threat detection (ETD) Content transmitted from an ETD Content Development System (CDS) as a publication of the ETD Content from the ETD CDS; comprising storing the received ETD Content into a Content Management System (CMS); determining a registered Client ETD System for which the ETD Content is relevant; and publishing the ETD Content to the registered Client ETD System.
- ETD enterprise threat detection
- CDS ETD Content Development System
- CMS Content Management System
- a first feature combinable with any of the following features, wherein the received ETD Content includes Security Notes and Content Files.
- a second feature combinable with any of the previous or following features, further comprising receiving the ETD Content using a Content Service secure administrative application programming interface (API).
- API application programming interface
- a third feature combinable with any of the previous or following features, wherein storing the received ETD Content includes reformatting the ETD Content for storage into the CMS.
- a fourth feature combinable with any of the previous or following features, further comprising receiving a registration for ETD Content from an ETD Client Import Service (CIS) executing on the Client ETD System.
- CIS ETD Client Import Service
- a fifth feature combinable with any of the previous or following features, wherein the ETD CIS connects to the Content Service using a public API.
- a sixth feature combinable with any of the previous or following features, further comprising integrating the received ETD Content into the Client ETD System.
- a non-transitory, computer-readable medium storing one or more instructions executable by a computer system to perform operations comprising: receiving, with a Content Service executing in a cloud-computing-based Cloud Platform, enterprise threat detection (ETD) Content transmitted from an ETD Content Development System (CDS) as a publication of the ETD Content from the ETD CDS; comprising storing the received ETD Content into a Content Management System (CMS); determining a registered Client ETD System for which the ETD Content is relevant; and publishing the ETD Content to the registered Client ETD System.
- ETD enterprise threat detection
- CDS ETD Content Development System
- CMS Content Management System
- a first feature combinable with any of the following features, wherein the received ETD Content includes Security Notes and Content Files.
- a second feature combinable with any of the previous or following features, further comprising one or more instructions to receive the ETD Content using a Content Service secure administrative application programming interface (API).
- API application programming interface
- a third feature combinable with any of the previous or following features, wherein storing the received ETD Content includes reformatting the ETD Content for storage into the CMS.
- a fourth feature combinable with any of the previous or following features, further comprising one or more instructions to receive a registration for ETD Content from an ETD Client Import Service (CIS) executing on the Client ETD System.
- CIS ETD Client Import Service
- a fifth feature combinable with any of the previous or following features, wherein the ETD CIS connects to the Content Service using a public API.
- a sixth feature combinable with any of the previous or following features, further comprising one or more instructions to integrate the received ETD Content into the Client ETD System.
- a computer-implemented system comprising: a computer memory; and a hardware processor interoperably coupled with the computer memory and configured to perform operations comprising: receiving, with a Content Service executing in a cloud-computing-based Cloud Platform, enterprise threat detection (ETD) Content transmitted from an ETD Content Development System (CDS) as a publication of the ETD Content from the ETD CDS; comprising storing the received ETD Content into a Content Management System (CMS); determining a registered Client ETD System for which the ETD Content is relevant; and publishing the ETD Content to the registered Client ETD System.
- ETD enterprise threat detection
- CDS ETD Content Development System
- CMS Content Management System
- a first feature combinable with any of the following features, wherein the received ETD Content includes Security Notes and Content Files.
- a second feature combinable with any of the previous or following features, further configured to receive the ETD Content using a Content Service secure administrative application programming interface (API).
- API application programming interface
- a third feature combinable with any of the previous or following features, wherein storing the received ETD Content includes reformatting the ETD Content for storage into the CMS.
- a fourth feature combinable with any of the previous or following features, further configured to receive a registration for ETD Content from an ETD Client Import Service (CIS) executing on the Client ETD System.
- CIS ETD Client Import Service
- a fifth feature combinable with any of the previous or following features, wherein the ETD CIS connects to the Content Service using a public API.
- a sixth feature combinable with any of the previous or following features, further configured to integrate the received ETD Content into the Client ETD System.
- Implementations of the subject matter and the functional operations described in this specification can be implemented in digital electronic circuitry, in tangibly embodied computer software or firmware, in computer hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them.
- Implementations of the subject matter described in this specification can be implemented as one or more computer programs, that is, one or more modules of computer program instructions encoded on a tangible, non-transitory, computer-readable computer-storage medium for execution by, or to control the operation of, data processing apparatus.
- the program instructions can be encoded in/on an artificially generated propagated signal, for example, a machine-generated electrical, optical, or electromagnetic signal that is generated to encode information for transmission to suitable receiver apparatus for execution by a data processing apparatus.
- the computer-storage medium can be a machine-readable storage device, a machine-readable storage substrate, a random or serial access memory device, or a combination of computer-storage mediums.
- real-time means that an action and a response are temporally proximate such that an individual perceives the action and the response occurring substantially simultaneously.
- time difference for a response to display (or for an initiation of a display) of data following the individual's action to access the data may be less than 1 ms, less than 1 sec., less than 5 secs., etc.
- data processing apparatus refers to data processing hardware and encompass all kinds of apparatus, devices, and machines for processing data, including by way of example, a programmable processor, a computer, or multiple processors or computers.
- the apparatus can also be or further include special purpose logic circuitry, for example, a central processing unit (CPU), an FPGA (field programmable gate array), or an ASIC (application-specific integrated circuit).
- the data processing apparatus or special purpose logic circuitry may be hardware- or software-based (or a combination of both hardware- and software-based).
- the apparatus can optionally include code that creates an execution environment for computer programs, for example, code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of execution environments.
- code that constitutes processor firmware for example, code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of execution environments.
- the present disclosure contemplates the use of data processing apparatuses with or without conventional operating systems, for example LINUX, UNIX, WINDOWS, MAC OS, ANDROID, IOS, or any other suitable conventional operating system.
- a computer program which may also be referred to or described as a program, software, a software application, a module, a software module, a script, or code can be written in any form of programming language, including compiled or interpreted languages, or declarative or procedural languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
- a computer program may, but need not, correspond to a file in a file system.
- a program can be stored in a portion of a file that holds other programs or data, for example, one or more scripts stored in a markup language document, in a single file dedicated to the program in question, or in multiple coordinated files, for example, files that store one or more modules, sub-programs, or portions of code.
- a computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network. While portions of the programs illustrated in the various figures are shown as individual modules that implement the various features and functionality through various objects, methods, or other processes, the programs may instead include a number of sub-modules, third-party services, components, libraries, and such, as appropriate. Conversely, the features and functionality of various components can be combined into single components as appropriate. Thresholds used to make computational determinations can be statically, dynamically, or both statically and dynamically determined.
- the methods, processes, logic flows, etc. described in this specification can be performed by one or more programmable computers executing one or more computer programs to perform functions by operating on input data and generating output.
- the methods, processes, logic flows, etc. can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, for example, a CPU, an FPGA, or an ASIC.
- Computers suitable for the execution of a computer program can be based on general or special purpose microprocessors, both, or any other kind of CPU.
- a CPU will receive instructions and data from a read-only memory (ROM) or a random access memory (RAM), or both.
- the essential elements of a computer are a CPU, for performing or executing instructions, and one or more memory devices for storing instructions and data.
- a computer will also include, or be operatively coupled to, receive data from or transfer data to, or both, one or more mass storage devices for storing data, for example, magnetic, magneto-optical disks, or optical disks.
- mass storage devices for storing data, for example, magnetic, magneto-optical disks, or optical disks.
- a computer need not have such devices.
- a computer can be embedded in another device, for example, a mobile telephone, a personal digital assistant (PDA), a mobile audio or video player, a game console, a global positioning system (GPS) receiver, or a portable storage device, for example, a universal serial bus (USB) flash drive, to name just a few.
- PDA personal digital assistant
- GPS global positioning system
- USB universal serial bus
- Computer-readable media suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, for example, erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), and flash memory devices; magnetic disks, for example, internal hard disks or removable disks; magneto-optical disks; and CD-ROM, DVD+/ ? R, DVD-RAM, and DVD-ROM disks.
- semiconductor memory devices for example, erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), and flash memory devices
- EPROM erasable programmable read-only memory
- EEPROM electrically erasable programmable read-only memory
- flash memory devices for example, internal hard disks or removable disks
- magneto-optical disks magneto-optical disks
- the memory may store various objects or data, including caches, classes, frameworks, applications, backup data, jobs, web pages, web page templates, database tables, repositories storing dynamic information, and any other appropriate information including any parameters, variables, algorithms, instructions, rules, constraints, or references thereto. Additionally, the memory may include any other appropriate data, such as logs, policies, security or access data, reporting files, as well as others.
- the processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
- implementations of the subject matter described in this specification can be implemented on a computer having a display device, for example, a CRT (cathode ray tube), LCD (liquid crystal display), LED (Light Emitting Diode), or plasma monitor, for displaying information to the user and a keyboard and a pointing device, for example, a mouse, trackball, or trackpad by which the user can provide input to the computer.
- a display device for example, a CRT (cathode ray tube), LCD (liquid crystal display), LED (Light Emitting Diode), or plasma monitor
- a keyboard and a pointing device for example, a mouse, trackball, or trackpad by which the user can provide input to the computer.
- Input may also be provided to the computer using a touchscreen, such as a tablet computer surface with pressure sensitivity, a multi-touch screen using capacitive or electric sensing, or other type of touchscreen.
- a computer can interact with a user by sending documents to and receiving documents from a device that is used by the user; for example, by sending web pages to a web browser on a user's client device in response to requests received from the web browser.
- GUI graphical user interface
- GUI may be used in the singular or the plural to describe one or more graphical user interfaces and each of the displays of a particular graphical user interface. Therefore, a GUI may represent any graphical user interface, including but not limited to, a web browser, a touch screen, or a command line interface (CLI) that processes information and efficiently presents the information results to the user.
- a GUI may include a plurality of user interface (UI) elements, some or all associated with a web browser, such as interactive fields, pull-down lists, and buttons. These and other UI elements may be related to or represent the functions of the web browser.
- UI user interface
- Implementations of the subject matter described in this specification can be implemented in a computing system that includes a back-end component, for example, as a data server, or that includes a middleware component, for example, an application server, or that includes a front-end component, for example, a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation of the subject matter described in this specification, or any combination of one or more such back-end, middleware, or front-end components.
- the components of the system can be interconnected by any form or medium of wireline or wireless digital data communication (or a combination of data communication), for example, a communication network.
- Examples of communication networks include a local area network (LAN), a radio access network (RAN), a metropolitan area network (MAN), a wide area network (WAN), Worldwide Interoperability for Microwave Access (WIMAX), a wireless local area network (WLAN) using, for example, 802.11 a/b/g/n or 802.20 (or a combination of 802.11x and 802.20 or other protocols consistent with this disclosure), all or a portion of the Internet, or any other communication system or systems at one or more locations (or a combination of communication networks).
- the network may communicate with, for example, Internet Protocol (IP) packets, Frame Relay frames, Asynchronous Transfer Mode (ATM) cells, voice, video, data, or other suitable information (or a combination of communication types) between network addresses.
- IP Internet Protocol
- ATM Asynchronous Transfer Mode
- the computing system can include clients and servers.
- a client and server are generally remote from each other and typically interact through a communication network.
- the relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.
- any claimed implementation below is considered to be applicable to at least a computer-implemented method; a non-transitory, computer-readable medium storing computer-readable instructions to perform the computer-implemented method; and a computer system comprising a computer memory interoperably coupled with a hardware processor configured to perform the computer-implemented method or the instructions stored on the non-transitory, computer-readable medium.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Information Transfer Between Computers (AREA)
Abstract
Description
- 百度 与此同时,平台还要不断挖掘优质资产,资产端的价码也水涨船高,平台的资金成本就进一步提升。
Enterprise threat detection (ETD) typically collects and stores a large amount/large sets of log data associated with various heterogeneous systems (often referred to as “big data”). The collected log data is usually analyzed using forensic-type data analysis tools to identify suspicious behavior and to allow an appropriate response. However, ETD systems have typically not been fully compatible or efficiently integrated with cloud computing systems.
- The present disclosure describes methods and systems, including computer-implemented methods, computer program products, and computer systems for distributing cloud computing platform content to enterprise threat detection (ETD) systems.
- In an implementation, a Content Service executing in a cloud-computing-based Cloud Platform receives enterprise threat detection (ETD) Content transmitted from an ETD Content Development System (CDS) as a publication of the ETD Content from the ETD CDS. The received ETD Content is stored into a Content Management System (CMS). A determination is made of a registered Client ETD System for which the ETD Content is relevant. The ETD Content is published to the registered Client ETD System.
- The above-described implementation is implementable using a computer-implemented method; a non-transitory, computer-readable medium storing computer-readable instructions to perform the computer-implemented method; and a computer-implemented system comprising a computer memory interoperably coupled with a hardware processor configured to perform the computer-implemented method/the instructions stored on the non-transitory, computer-readable medium.
- The subject matter described in this specification can be implemented in particular implementations so as to realize one or more of the following advantages. First, client administrators do not have to log into a service marketplace to discover where new ETD Security Notes and associated Content files have been published. Second, client administrators do not need to determine whether the published new ETD Security Notes and associated Content files are applicable to their information technology (IT) landscapes (including ETD systems). Third, new ETD Content can be automatically published to a cloud-computing-based Content Service. Fourth, Client ETD Systems can register for published ETD Content applicable to their Client ETD System. When new ETD Content applicable to their Client ETD System is published, the Content Service can publish the new ETD Content to the Client ETD System. The published new ETD Content can also be automatically integrated into the Client ETD System. Other advantages will be apparent to those of ordinary skill in the art.
- The details of one or more implementations of the subject matter of this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.
-
FIG. 1 is a block diagram illustrating an example distributed computing system (EDCS) for providing enterprise threat detection (ETD) content using a cloud-computing platform Content Service, according to an implementation. -
FIG. 2 is a flowchart illustrating an example method for providing ETD Content using a cloud-computing platform Content Service, according to an implementation. -
FIG. 3 is a block diagram illustrating an exemplary computer system used to provide computational functionalities associated with described algorithms, methods, functions, processes, flows, and procedures as described in the instant disclosure, according to an implementation. - Like reference numbers and designations in the various drawings indicate like elements.
- The following detailed description describes distributing cloud computing platform content to enterprise threat detection (ETD) systems and is presented to enable any person skilled in the art to make and use the disclosed subject matter in the context of one or more particular implementations. Various modifications to the disclosed implementations will be readily apparent to those of ordinary skill in the art, and described principles may be applied to other implementations and applications without departing from scope of the disclosure. Thus, the present disclosure is not intended to be limited to the described or illustrated implementations, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
- ETD typically collects and stores a large amount/large sets of log data associated with various heterogeneous systems (often referred to as “big data”). The collected log data is usually analyzed using forensic-type data analysis tools to identify suspicious behavior and to allow an appropriate response. However, ETD systems have typically not been fully compatible or efficiently integrated with cloud computing systems.
- For example, published ETD Security Notes (hereinafter “Security Notes”) reveal discovered weaknesses in client information technology (IT) landscapes (including client ETD systems). The Security Notes are typically made available on a service marketplace (for example, SAP Service Marketplace), and it is each client's administrative responsibility to monitor the service marketplace and update their particular IT landscape based on information in the Security Notes.
- Often, client IT landscapes are not updated within a reasonable time from publication of the Security Notes to mitigate or eliminate exposure to potential exploits revealed by the discovered security weaknesses. One primary reason is that it is often mandatory to disable an IT landscape server(s) to perform security updates, update software revisions, etc. The downtime reduces productiveness of the client IT landscapes, is often prohibited by business realities, and encourages clients to perform scheduled security updates/servicing as opposed to updating at a point-in-time when security weaknesses are discovered.
- As a result, ETD systems currently provide a “virtual patching service” which provides updated ETD detection “patterns” (used to detect event anomalies in IT landscapes) contemporaneously with Security Notes that can be used by a client to detect possible malicious activities in their IT landscape until their particular IT landscape is updated to mitigate or eliminate the discovered security weaknesses. Clients receive the updated ETD Patterns and manually update their ETD systems to incorporate the updated ETD detection capabilities. If a security breach/exploit is discovered prior to a scheduled update of an IT landscape, mitigation actions can be taken at that time. The virtual patching service can be seen as a “shelter-in-place” strategy.
- Using the virtual patching service provides clients an overlook of known security risks pertaining to the client IT landscape. Additionally, clients do not need to disable their IT landscape every time a security weakness is discovered, so client IT landscape productivity remains high. Clients can also determine, based on their unique business circumstances, cost effectiveness vs. risk with respect to scheduling implementation of ETD security updates for identified weak points in their IT landscape.
- Currently, Security Notes and ETD Patterns are not available using cloud-computing platforms. Providing clients Security Notes and patterns using a secure cloud-computing platform can offer an ETD “pre-notify” service based on Security Notes and as an automatic adjustment service for ETD Patterns.
- Described is a cloud-computing platform Content Service that delivers ETD Content applicable to a particular client IT landscape which can be consumed by an ETD system in the particular client IT landscape. The provided ETD Content typically contains Security Notes and Content Files. Content Files can include ETD Patterns or other content useful for ETD purposes, etc. The generated ETD Content is typically reprocessed (for example, into JSON or other file formats) for storage by Content Service into a data store and transfer by the Content Service from the data store to a Client ETD system. In typical implementations, a Client ETD System will only receive Security Notes and Content Files relevant for the client IT landscape. A Security Note and associated Content File is considered relevant if related corrections are not yet included in a particular version of systems/software (including the Client ETD System) associated with the client IT landscape.
-
FIG. 1 is a block diagram illustrating an example distributed computing system (EDCS) 100 for providing enterprise threat detection (ETD) content using a cloud-computing platform Content Service, according to an implementation. At a high-level, the EDCS 100 includes an ETD Content Development System (CDS) 102, cloud-computing-based CloudPlatform 104, and Client ETD System 106, connected usingnetwork 130. The CloudPlatform 104 contains aContent Service 108 and a Content Management System (CMS) 110. The Client ETDSystem 106 contains an ETD Content Importer Service (CIS) 112. Note that thedifferent network 130 connections can each represent an independent network (for example, the ETD CDS 102 can be connect to the CloudPlatform 104 with a network that is independent of the network used to connect the Client ETDSystem 106 to the CloudPlatform 104. - In typical implementations, ETD Content is obtained by the ETD
CDS 102 from databases (not illustrated) containing information related to discovered security weaknesses, threats, and the like. The ETDCDS 102 is configured to permit ETD Content to be developed, edited/updated, and published to theContent Service 108 executing on the CloudPlatform 104. Publication can include both push- and pull-type content delivery. In some implementations, saving/updating ETD Content on the ETDCDS 102 can trigger ETD Content synchronization (that is, automatic publication) of the ETD Content to theContent Service 108 or a notification (for example, send to an administrator of the ETD CDS 102) that the saved/updated ETD Content needs to be published to theContent Service 108. Content Synchronization can also occur from theContent Service 108 to the ETDCDS 102 if content is changed in theCMS 110. The ETD CDS 102 can be configured to provide tools for development, editing/updating, and publication of ETD Content (for example, using graphical user interface (GUI) tools). - The
Content Service 108 contains an Administrative Application Programming Interface (API) 114 and a Public API 116. In typical implementations, theAdministrative API 112 andPublic API 114 can be implemented as representational state transfer (REST) APIs. Moreover, in typical implementations, theContent Service 108 is implemented as a REST service. TheAdministrative API 114 is configured to be secure (for example, accessible by users with particular defined roles—such as “etd-admin” or other defined role) and is provided to permit secure transfer of ETD Content to theContent Service 108 for storage. The Public API 116 is provided to permit access and retrieval of the ETD Content for consumption by theClient ETD System 106. In typical implementations, the stored ETD Content is accessible using the Public API 116 without credentials. In some implementations, theContent Service 108 is coded in the JAVA programming language using JAX-RS JAVA APIs for RESTful Web services and the APACHE CXF Web services framework. - ETD Content from the
ETD CDS 102 is stored in Content Management System (CMS) 110. In some implementations, theCMS 110 is based on the Content Management Interoperability Services (CMIS) interface protocol. - In typical implementations, a
network 130 connection configured between theETD CDS 102 and theAdministrative API 114 is configured to be READ/WRITE, permitting administrators to manage ETD Content in theCMS 110 andContent Service 108 configuration. In typical implementations, anetwork 130 connection configured between theETD CIS 112 and the Public API 116 is configured to be READ only, to preserve security related to theContent Service 108 and other connected components of theEDCS 100. In typical implementations, connections between theETD CDS 102,ETD CIS 112, and the applicable APIs of theContent Platform 104 are configured to use the Hypertext Transfer Protocol/Secure (HTTPS) protocol. - In some implementations, the
Content Service 108 can be used to update Client ETD Systems with updated ETD Patterns. For example, a relationship can be configured between new Security Notes and associated ETD Patterns. TheETD CIS 112 can register with theContent Service 108 through a request to receive new ETD Content). When new Security Notes and Content Files are written to theCMS 110 by theETD CDS 102, the Content Service can determine which Client ETD System(s) the new Security Notes and associated ETD Patterns (as Content Files) are applicable to, and can publish the ETD Content to applicable ETD CIS 112 s. In some implementations, the associated ETD Patterns can be automatically integrated into theClient ETD System 106. This described configuration would permit rapid dissemination and integration of new Security Notes and associated ETD Patterns toClient ETD Systems 106 to help perform automatic, proactive “virtual patching” of theClient ETD System 106. In effect, theContent Service 108 can act as a pre-notify service to updateClient ETD Systems 106 with updated ETD Patterns prior to client awareness of the update. - As described above, the
ETD CIS 112 is configured to read new ETC content from theContent Service 108 using thePublic API 114. TheETD CIS 112 is configured as an extension of theClient ETD System 106 database (not illustrated). In typical implementations, the database is an in-memory database (such as SAP HANA). TheETD CIS 112 is configured to consume theContent Service 108. In some implementations, theETD CIS 112 is written in JAVASCRIPT. - In typical implementations, ETD Content (Security Notes and Content Files) is reformatted by the
ETD CDS 102 prior to transfer to the Content Service 108 (for example, as JSON files) and written to theCMS 110. Content Files can be “assigned” to Security Notes using various attributes. TheContent Service 108 signs the ETD Content with an ETD private key of theETD CDS 102. The receivingClient ETD System 106 validates the ETD private key signature with an ETD public key. - In some implementations, an example Content File (as an ETD Pattern) can resemble:
-
{ ″id″ : ″4711″, // technical ID of the content file ″version″ : { ″etdVersion″ : ″1.0″, ″etdSP″ : 3, ″etdPatchLevel″ : 1, ″version″ : 5 }, ″description″ : “Unauthorized access to billing service” ″noteNumbers″ : [4711, 4712], // related notes. ″items″ : [{ ″id″ : “A0A1” // technical ID of the pattern ″objectType″ : ″Pattern″, ″objectName″ : Unauthorized access to billing service ″data″ : <implementation code of the security pattern > ″version″ : ″1.0″, ″replicationMode″ : ″manual″ // customer is asked to include object in ETD system ] }. - As illustrated, the example Content File includes one item (here IDs “A0A1” that is linked to associated Security Notes through JSON attribute “noteNumbers”: [4711, 4712].” Affected ETD version for the item is stored in the JSON attribute “version” (here “1.0” for item “A0A1”). Note that the above-described example Content File is provided for purposes of understanding and is not meant to limit the disclosure in any way. A Content File can contain other values and data consistent with this disclosure. The other values and data are also considered to be within the scope of this disclosure.
- In some implementations, Security Notes can contain, among other things:
-
- A note number,
- A description—for example, which software components are affected by the note,
- information about SAP support packages containing the program corrections related to the note, and
- Information about affected objects—ETD uses this information to detect whether weaknesses on these objects are exploited.
-
FIG. 2 is a flowchart of anexample method 200 for distributing cloud computing platform content to ETD systems, according to an implementation. For clarity of presentation, the description that follows generally describesmethod 200 in the context of the other figures in this description. However, it will be understood thatmethod 200 may be performed, for example, by any suitable system, environment, software, and hardware, or a combination of systems, environments, software, and hardware as appropriate. In some implementations, various steps ofmethod 200 can be run in parallel, in combination, in loops, or in any order. - At 202, developed enterprise threat detection (ETD) Content is transmitted from an ETD Content Development System (CDS) as a publication of the ETD Content from the ETD CDS to a Content Service executing in a cloud-computing-based Cloud Platform. The received ETD Content includes Security Notes and Content Files. Content Files can include ETD Patterns or other content useful for ETD purposes. In typical implementations, the ETD Content is received by a Content Service secure administrative API. From 202,
method 200 proceeds to 204. - At 204, the received ETD Content is stored into a Content Management System (CMS) executing in the Cloud Platform. In typical implementations, storing the received ETD Content includes reformatting the ETD Content for storage into the CMS. From 204,
method 200 proceeds to 206. - At 206, a registered Client ETD System for which the ETD Content is applicable is determined. A registration is received for ETD Content from an ETD Client Import Service (CIS) executing on the Client ETD System. In typical implementations, the ETD CIS connects to the Content Service using a public API. From 206,
method 200 proceeds to 208. - At 208, the ETD Content is published to the registered Client ETD System. In some implementation the published ETD Content received by the ETD CIS is integrated into the Client ETD System. In some implementations, the integration can be configured to be automatically performed. After 208,
method 200 stops. -
FIG. 3 is a block diagram of anexemplary computer system 300 used to provide computational functionalities associated with described algorithms, methods, functions, processes, flows, and procedures as described in the instant disclosure, according to an implementation. The illustratedcomputer 302 is intended to encompass any computing device such as a server, desktop computer, laptop/notebook computer, wireless data port, smart phone, personal data assistant (PDA), tablet computing device, one or more processors within these devices, or any other suitable processing device, including both physical or virtual instances (or both) of the computing device. Additionally, thecomputer 302 may comprise a computer that includes an input device, such as a keypad, keyboard, touch screen, or other device that can accept user information, and an output device that conveys information associated with the operation of thecomputer 302, including digital data, visual, or audio information (or a combination of information), or a graphical user interface (GUI). - The
computer 302 can serve in a role as a client, network component, a server, a database or other persistency, or any other component (or a combination of roles) of a computer system for performing the subject matter described in the instant disclosure. The illustratedcomputer 302 is communicably coupled with anetwork 330. In some implementations, one or more components of thecomputer 302 may be configured to operate within environments, including cloud-computing-based, local, global, or other environment (or a combination of environments). - At a high level, the
computer 302 is an electronic computing device operable to receive, transmit, process, store, or manage data and information associated with the described subject matter. According to some implementations, thecomputer 302 may also include or be communicably coupled with an application server, e-mail server, web server, caching server, streaming data server, or other server (or a combination of servers). - The
computer 302 can receive requests overnetwork 330 from a client application (for example, executing on another computer 302) and responding to the received requests by processing the said requests in an appropriate software application. In addition, requests may also be sent to thecomputer 302 from internal users (for example, from a command console or by other appropriate access method), external or third-parties, other automated applications, as well as any other appropriate entities, individuals, systems, or computers. - Each of the components of the
computer 302 can communicate using asystem bus 303. In some implementations, any or all of the components of thecomputer 302, both hardware or software (or a combination of hardware and software), may interface with each other or the interface 304 (or a combination of both) over thesystem bus 303 using an application programming interface (API) 312 or a service layer 313 (or a combination of theAPI 312 and service layer 313). TheAPI 312 may include specifications for routines, data structures, and object classes. TheAPI 312 may be either computer-language independent or dependent and refer to a complete interface, a single function, or even a set of APIs. Theservice layer 313 provides software services to thecomputer 302 or other components (whether or not illustrated) that are communicably coupled to thecomputer 302. The functionality of thecomputer 302 may be accessible for all service consumers using this service layer. Software services, such as those provided by theservice layer 313, provide reusable, defined functionalities through a defined interface. For example, the interface may be software written in JAVA, C++, or other suitable language providing data in extensible markup language (XML) format or other suitable format. While illustrated as an integrated component of thecomputer 302, alternative implementations may illustrate theAPI 312 or theservice layer 313 as stand-alone components in relation to other components of thecomputer 302 or other components (whether or not illustrated) that are communicably coupled to thecomputer 302. Moreover, any or all parts of theAPI 312 or theservice layer 313 may be implemented as child or sub-modules of another software module, enterprise application, or hardware module without departing from the scope of this disclosure. - The
computer 302 includes aninterface 304. Although illustrated as asingle interface 304 inFIG. 3 , two ormore interfaces 304 may be used according to particular needs, desires, or particular implementations of thecomputer 302. Theinterface 304 is used by thecomputer 302 for communicating with other systems in a distributed environment that are connected to the network 330 (whether illustrated or not). Generally, theinterface 304 comprises logic encoded in software or hardware (or a combination of software and hardware) and operable to communicate with thenetwork 330. More specifically, theinterface 304 may comprise software supporting one or more communication protocols associated with communications such that thenetwork 330 or interface's hardware is operable to communicate physical signals within and outside of the illustratedcomputer 302. - The
computer 302 includes aprocessor 305. Although illustrated as asingle processor 305 inFIG. 3 , two or more processors may be used according to particular needs, desires, or particular implementations of thecomputer 302. Generally, theprocessor 305 executes instructions and manipulates data to perform the operations of thecomputer 302 and any algorithms, methods, functions, processes, flows, and procedures as described in the instant disclosure. - The
computer 302 also includes adatabase 306 that can hold data for thecomputer 302 or other components (or a combination of both) that can be connected to the network 330 (whether illustrated or not). For example,database 306 can be an in-memory, conventional, or other type of database storing data consistent with this disclosure. In some implementations,database 306 can be a combination of two or more different database types (for example, a hybrid in-memory and conventional database) according to particular needs, desires, or particular implementations of thecomputer 302 and the described functionality. Although illustrated as asingle database 306 inFIG. 3 , two or more databases (of the same or combination of types) can be used according to particular needs, desires, or particular implementations of thecomputer 302 and the described functionality. Whiledatabase 306 is illustrated as an integral component of thecomputer 302, in alternative implementations,database 306 can be external to thecomputer 302. As illustrated, thedatabase 306 holds aSecurity Note 314 and aContent File 316 as described above. - The
computer 302 also includes amemory 307 that can hold data for thecomputer 302 or other components (or a combination of both) that can be connected to the network 330 (whether illustrated or not). For example,memory 307 can be random access memory (RAM), read-only memory (ROM), optical, magnetic, and the like storing data consistent with this disclosure. In some implementations,memory 307 can be a combination of two or more different types of memory (for example, a combination of RAM and magnetic storage) according to particular needs, desires, or particular implementations of thecomputer 302 and the described functionality. Although illustrated as asingle memory 307 inFIG. 3 , two or more memories 307 (of the same or combination of types) can be used according to particular needs, desires, or particular implementations of thecomputer 302 and the described functionality. Whilememory 307 is illustrated as an integral component of thecomputer 302, in alternative implementations,memory 307 can be external to thecomputer 302. - The
application 308 is an algorithmic software engine providing functionality according to particular needs, desires, or particular implementations of thecomputer 302, particularly with respect to functionality described in this disclosure. For example,application 308 can serve as one or more components, modules, applications, etc. Further, although illustrated as asingle application 308, theapplication 308 may be implemented asmultiple applications 308 on thecomputer 302. In addition, although illustrated as integral to thecomputer 302, in alternative implementations, theapplication 308 can be external to thecomputer 302. - There may be any number of
computers 302 associated with, or external to, a computersystem containing computer 302, eachcomputer 302 communicating overnetwork 330. Further, the term “client,” “user,” and other appropriate terminology may be used interchangeably as appropriate without departing from the scope of this disclosure. Moreover, this disclosure contemplates that many users may use onecomputer 302, or that one user may usemultiple computers 302. - Described implementations of the subject matter can include one or more features, alone or in combination.
- For example, in a first implementation, a computer-implemented method, comprising: receiving, with a Content Service executing in a cloud-computing-based Cloud Platform, enterprise threat detection (ETD) Content transmitted from an ETD Content Development System (CDS) as a publication of the ETD Content from the ETD CDS; comprising storing the received ETD Content into a Content Management System (CMS); determining a registered Client ETD System for which the ETD Content is relevant; and publishing the ETD Content to the registered Client ETD System.
- The foregoing and other described implementations can each optionally include one or more of the following features:
- A first feature, combinable with any of the following features, wherein the received ETD Content includes Security Notes and Content Files.
- A second feature, combinable with any of the previous or following features, further comprising receiving the ETD Content using a Content Service secure administrative application programming interface (API).
- A third feature, combinable with any of the previous or following features, wherein storing the received ETD Content includes reformatting the ETD Content for storage into the CMS.
- A fourth feature, combinable with any of the previous or following features, further comprising receiving a registration for ETD Content from an ETD Client Import Service (CIS) executing on the Client ETD System.
- A fifth feature, combinable with any of the previous or following features, wherein the ETD CIS connects to the Content Service using a public API.
- A sixth feature, combinable with any of the previous or following features, further comprising integrating the received ETD Content into the Client ETD System.
- In a second implementation, a non-transitory, computer-readable medium storing one or more instructions executable by a computer system to perform operations comprising: receiving, with a Content Service executing in a cloud-computing-based Cloud Platform, enterprise threat detection (ETD) Content transmitted from an ETD Content Development System (CDS) as a publication of the ETD Content from the ETD CDS; comprising storing the received ETD Content into a Content Management System (CMS); determining a registered Client ETD System for which the ETD Content is relevant; and publishing the ETD Content to the registered Client ETD System.
- The foregoing and other described implementations can each optionally include one or more of the following features:
- A first feature, combinable with any of the following features, wherein the received ETD Content includes Security Notes and Content Files.
- A second feature, combinable with any of the previous or following features, further comprising one or more instructions to receive the ETD Content using a Content Service secure administrative application programming interface (API).
- A third feature, combinable with any of the previous or following features, wherein storing the received ETD Content includes reformatting the ETD Content for storage into the CMS.
- A fourth feature, combinable with any of the previous or following features, further comprising one or more instructions to receive a registration for ETD Content from an ETD Client Import Service (CIS) executing on the Client ETD System.
- A fifth feature, combinable with any of the previous or following features, wherein the ETD CIS connects to the Content Service using a public API.
- A sixth feature, combinable with any of the previous or following features, further comprising one or more instructions to integrate the received ETD Content into the Client ETD System.
- In a third implementation, a computer-implemented system, comprising: a computer memory; and a hardware processor interoperably coupled with the computer memory and configured to perform operations comprising: receiving, with a Content Service executing in a cloud-computing-based Cloud Platform, enterprise threat detection (ETD) Content transmitted from an ETD Content Development System (CDS) as a publication of the ETD Content from the ETD CDS; comprising storing the received ETD Content into a Content Management System (CMS); determining a registered Client ETD System for which the ETD Content is relevant; and publishing the ETD Content to the registered Client ETD System.
- The foregoing and other described implementations can each optionally include one or more of the following features:
- A first feature, combinable with any of the following features, wherein the received ETD Content includes Security Notes and Content Files.
- A second feature, combinable with any of the previous or following features, further configured to receive the ETD Content using a Content Service secure administrative application programming interface (API).
- A third feature, combinable with any of the previous or following features, wherein storing the received ETD Content includes reformatting the ETD Content for storage into the CMS.
- A fourth feature, combinable with any of the previous or following features, further configured to receive a registration for ETD Content from an ETD Client Import Service (CIS) executing on the Client ETD System.
- A fifth feature, combinable with any of the previous or following features, wherein the ETD CIS connects to the Content Service using a public API.
- A sixth feature, combinable with any of the previous or following features, further configured to integrate the received ETD Content into the Client ETD System.
- Implementations of the subject matter and the functional operations described in this specification can be implemented in digital electronic circuitry, in tangibly embodied computer software or firmware, in computer hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them. Implementations of the subject matter described in this specification can be implemented as one or more computer programs, that is, one or more modules of computer program instructions encoded on a tangible, non-transitory, computer-readable computer-storage medium for execution by, or to control the operation of, data processing apparatus. Alternatively, or additionally, the program instructions can be encoded in/on an artificially generated propagated signal, for example, a machine-generated electrical, optical, or electromagnetic signal that is generated to encode information for transmission to suitable receiver apparatus for execution by a data processing apparatus. The computer-storage medium can be a machine-readable storage device, a machine-readable storage substrate, a random or serial access memory device, or a combination of computer-storage mediums.
- The term “real-time,” “real time,” “realtime,” “real (fast) time (RFT),” “near(ly) real-time (NRT),” “quasi real-time,” or similar terms (as understood by one of ordinary skill in the art), means that an action and a response are temporally proximate such that an individual perceives the action and the response occurring substantially simultaneously. For example, the time difference for a response to display (or for an initiation of a display) of data following the individual's action to access the data may be less than 1 ms, less than 1 sec., less than 5 secs., etc. While the requested data need not be displayed (or initiated for display) instantaneously, it is displayed (or initiated for display) without any intentional delay, taking into account processing limitations of a described computing system and time required to, for example, gather, accurately measure, analyze, process, store, or transmit the data.
- The terms “data processing apparatus,” “computer,” or “electronic computer device” (or equivalent as understood by one of ordinary skill in the art) refer to data processing hardware and encompass all kinds of apparatus, devices, and machines for processing data, including by way of example, a programmable processor, a computer, or multiple processors or computers. The apparatus can also be or further include special purpose logic circuitry, for example, a central processing unit (CPU), an FPGA (field programmable gate array), or an ASIC (application-specific integrated circuit). In some implementations, the data processing apparatus or special purpose logic circuitry (or a combination of the data processing apparatus or special purpose logic circuitry) may be hardware- or software-based (or a combination of both hardware- and software-based). The apparatus can optionally include code that creates an execution environment for computer programs, for example, code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of execution environments. The present disclosure contemplates the use of data processing apparatuses with or without conventional operating systems, for example LINUX, UNIX, WINDOWS, MAC OS, ANDROID, IOS, or any other suitable conventional operating system.
- A computer program, which may also be referred to or described as a program, software, a software application, a module, a software module, a script, or code can be written in any form of programming language, including compiled or interpreted languages, or declarative or procedural languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program may, but need not, correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data, for example, one or more scripts stored in a markup language document, in a single file dedicated to the program in question, or in multiple coordinated files, for example, files that store one or more modules, sub-programs, or portions of code. A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network. While portions of the programs illustrated in the various figures are shown as individual modules that implement the various features and functionality through various objects, methods, or other processes, the programs may instead include a number of sub-modules, third-party services, components, libraries, and such, as appropriate. Conversely, the features and functionality of various components can be combined into single components as appropriate. Thresholds used to make computational determinations can be statically, dynamically, or both statically and dynamically determined.
- The methods, processes, logic flows, etc. described in this specification can be performed by one or more programmable computers executing one or more computer programs to perform functions by operating on input data and generating output. The methods, processes, logic flows, etc. can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, for example, a CPU, an FPGA, or an ASIC.
- Computers suitable for the execution of a computer program can be based on general or special purpose microprocessors, both, or any other kind of CPU. Generally, a CPU will receive instructions and data from a read-only memory (ROM) or a random access memory (RAM), or both. The essential elements of a computer are a CPU, for performing or executing instructions, and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to, receive data from or transfer data to, or both, one or more mass storage devices for storing data, for example, magnetic, magneto-optical disks, or optical disks. However, a computer need not have such devices. Moreover, a computer can be embedded in another device, for example, a mobile telephone, a personal digital assistant (PDA), a mobile audio or video player, a game console, a global positioning system (GPS) receiver, or a portable storage device, for example, a universal serial bus (USB) flash drive, to name just a few.
- Computer-readable media (transitory or non-transitory, as appropriate) suitable for storing computer program instructions and data include all forms of non-volatile memory, media and memory devices, including by way of example semiconductor memory devices, for example, erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), and flash memory devices; magnetic disks, for example, internal hard disks or removable disks; magneto-optical disks; and CD-ROM, DVD+/?R, DVD-RAM, and DVD-ROM disks. The memory may store various objects or data, including caches, classes, frameworks, applications, backup data, jobs, web pages, web page templates, database tables, repositories storing dynamic information, and any other appropriate information including any parameters, variables, algorithms, instructions, rules, constraints, or references thereto. Additionally, the memory may include any other appropriate data, such as logs, policies, security or access data, reporting files, as well as others. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
- To provide for interaction with a user, implementations of the subject matter described in this specification can be implemented on a computer having a display device, for example, a CRT (cathode ray tube), LCD (liquid crystal display), LED (Light Emitting Diode), or plasma monitor, for displaying information to the user and a keyboard and a pointing device, for example, a mouse, trackball, or trackpad by which the user can provide input to the computer. Input may also be provided to the computer using a touchscreen, such as a tablet computer surface with pressure sensitivity, a multi-touch screen using capacitive or electric sensing, or other type of touchscreen. Other kinds of devices can be used to provide for interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback, for example, visual feedback, auditory feedback, or tactile feedback; and input from the user can be received in any form, including acoustic, speech, or tactile input. In addition, a computer can interact with a user by sending documents to and receiving documents from a device that is used by the user; for example, by sending web pages to a web browser on a user's client device in response to requests received from the web browser.
- The term “graphical user interface,” or “GUI,” may be used in the singular or the plural to describe one or more graphical user interfaces and each of the displays of a particular graphical user interface. Therefore, a GUI may represent any graphical user interface, including but not limited to, a web browser, a touch screen, or a command line interface (CLI) that processes information and efficiently presents the information results to the user. In general, a GUI may include a plurality of user interface (UI) elements, some or all associated with a web browser, such as interactive fields, pull-down lists, and buttons. These and other UI elements may be related to or represent the functions of the web browser.
- Implementations of the subject matter described in this specification can be implemented in a computing system that includes a back-end component, for example, as a data server, or that includes a middleware component, for example, an application server, or that includes a front-end component, for example, a client computer having a graphical user interface or a Web browser through which a user can interact with an implementation of the subject matter described in this specification, or any combination of one or more such back-end, middleware, or front-end components. The components of the system can be interconnected by any form or medium of wireline or wireless digital data communication (or a combination of data communication), for example, a communication network. Examples of communication networks include a local area network (LAN), a radio access network (RAN), a metropolitan area network (MAN), a wide area network (WAN), Worldwide Interoperability for Microwave Access (WIMAX), a wireless local area network (WLAN) using, for example, 802.11 a/b/g/n or 802.20 (or a combination of 802.11x and 802.20 or other protocols consistent with this disclosure), all or a portion of the Internet, or any other communication system or systems at one or more locations (or a combination of communication networks). The network may communicate with, for example, Internet Protocol (IP) packets, Frame Relay frames, Asynchronous Transfer Mode (ATM) cells, voice, video, data, or other suitable information (or a combination of communication types) between network addresses.
- The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.
- While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any invention or on the scope of what may be claimed, but rather as descriptions of features that may be specific to particular implementations of particular inventions. Certain features that are described in this specification in the context of separate implementations can also be implemented, in combination, in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations, separately, or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can, in some cases, be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
- Particular implementations of the subject matter have been described. Other implementations, alterations, and permutations of the described implementations are within the scope of the following claims as will be apparent to those skilled in the art. While operations are depicted in the drawings or claims in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed (some operations may be considered optional), to achieve desirable results. In certain circumstances, multitasking or parallel processing (or a combination of multitasking and parallel processing) may be advantageous and performed as deemed appropriate.
- Moreover, the separation or integration of various system modules and components in the implementations described above should not be understood as requiring such separation or integration in all implementations, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products.
- Accordingly, the above description of example implementations does not define or constrain this disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of this disclosure.
- Furthermore, any claimed implementation below is considered to be applicable to at least a computer-implemented method; a non-transitory, computer-readable medium storing computer-readable instructions to perform the computer-implemented method; and a computer system comprising a computer memory interoperably coupled with a hardware processor configured to perform the computer-implemented method or the instructions stored on the non-transitory, computer-readable medium.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/383,771 US10764306B2 (en) | 2025-08-07 | 2025-08-07 | Distributing cloud-computing platform content to enterprise threat detection systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/383,771 US10764306B2 (en) | 2025-08-07 | 2025-08-07 | Distributing cloud-computing platform content to enterprise threat detection systems |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180176235A1 true US20180176235A1 (en) | 2025-08-07 |
US10764306B2 US10764306B2 (en) | 2025-08-07 |
Family
ID=62562124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/383,771 Active 2025-08-07 US10764306B2 (en) | 2025-08-07 | 2025-08-07 | Distributing cloud-computing platform content to enterprise threat detection systems |
Country Status (1)
Country | Link |
---|---|
US (1) | US10764306B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180176238A1 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Using frequency analysis in enterprise threat detection to detect intrusions in a computer system |
US10482241B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Visualization of data distributed in multiple dimensions |
US10530794B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Pattern creation in enterprise threat detection |
US10534907B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Providing semantic connectivity between a java application server and enterprise threat detection system using a J2EE data |
US10534908B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Alerts based on entities in security information and event management products |
US10536476B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Realtime triggering framework |
US10542016B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Location enrichment in enterprise threat detection |
US10552605B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Anomaly detection in enterprise threat detection |
US10630705B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Real-time push API for log events in enterprise threat detection |
US10673879B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Snapshot of a forensic investigation for enterprise threat detection |
US10681064B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Analysis of complex relationships among information technology security-relevant entities using a network graph |
US10986111B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Displaying a series of events along a time axis in enterprise threat detection |
US20220137600A1 (en) * | 2025-08-07 | 2025-08-07 | Schneider Electric Industries Sas | Iot gateway for industrial control systems, associated devices, systems and methods |
US11470094B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Bi-directional content replication logic for enterprise threat detection |
US12238134B1 (en) * | 2025-08-07 | 2025-08-07 | Eygs Llp | Automated discovery and evaluation of vulnerability hotspots in computer networks |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030115484A1 (en) * | 2025-08-07 | 2025-08-07 | Moriconi Mark S. | System and method for incrementally distributing a security policy in a computer network |
US20060161816A1 (en) * | 2025-08-07 | 2025-08-07 | Gula Ronald J | System and method for managing events |
US20070150596A1 (en) * | 2025-08-07 | 2025-08-07 | Microsoft Corporation | Content Publication |
US20090300045A1 (en) * | 2025-08-07 | 2025-08-07 | Safe Channel Inc. | Distributed security provisioning |
US20120167161A1 (en) * | 2025-08-07 | 2025-08-07 | Electronics And Telecommunications Research Institute | Apparatus and method for controlling security condition of global network |
US20120271790A1 (en) * | 2025-08-07 | 2025-08-07 | Yahoo! Inc. | System and method for mining tags using social endorsement networks |
US20160366174A1 (en) * | 2025-08-07 | 2025-08-07 | Soltra Solutions, Llc | Computerized system and method for securely distributing and exchanging cyber-threat information in a standardized format |
Family Cites Families (188)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5440726A (en) | 2025-08-07 | 2025-08-07 | At&T Corp. | Progressive retry method and apparatus having reusable software modules for software failure recovery in multi-process message-passing applications |
US5960170A (en) | 2025-08-07 | 2025-08-07 | Trend Micro, Inc. | Event triggered iterative virus detection |
JP3778652B2 (en) | 2025-08-07 | 2025-08-07 | 株式会社日立製作所 | Log data collection management method and apparatus |
US6629106B1 (en) | 2025-08-07 | 2025-08-07 | Computing Services Support Solutions, Inc. | Event monitoring and correlation system |
JP2001101044A (en) | 2025-08-07 | 2025-08-07 | Toshiba Corp | Transactional file managing method and transactional file system and composite transactional file system |
US6684250B2 (en) | 2025-08-07 | 2025-08-07 | Quova, Inc. | Method and apparatus for estimating a geographic location of a networked entity |
US20020070953A1 (en) | 2025-08-07 | 2025-08-07 | Barg Timothy A. | Systems and methods for visualizing and analyzing conditioned data |
US7441197B2 (en) | 2025-08-07 | 2025-08-07 | Global Asset Protection Services, Llc | Risk management information interface system and associated methods |
AU2003217819B2 (en) | 2025-08-07 | 2025-08-07 | Extreme Networks, Inc. | Location aware data network |
US20040015481A1 (en) | 2025-08-07 | 2025-08-07 | Kenneth Zinda | Patent data mining |
US7509675B2 (en) | 2025-08-07 | 2025-08-07 | At&T Intellectual Property I, L.P. | Non-invasive monitoring of the effectiveness of electronic security services |
US7788718B1 (en) | 2025-08-07 | 2025-08-07 | Mcafee, Inc. | Method and apparatus for detecting a distributed denial of service attack |
US7418733B2 (en) | 2025-08-07 | 2025-08-07 | International Business Machines Corporation | Determining threat level associated with network activity |
US7454499B2 (en) | 2025-08-07 | 2025-08-07 | Tippingpoint Technologies, Inc. | Active network defense system and method |
US7376969B1 (en) | 2025-08-07 | 2025-08-07 | Arcsight, Inc. | Real time monitoring and analysis of events from multiple network security devices |
EP1593228B8 (en) | 2025-08-07 | 2025-08-07 | McAfee, LLC | Network audit policy assurance system |
US7496959B2 (en) | 2025-08-07 | 2025-08-07 | Architecture Technology Corporation | Remote collection of computer forensic evidence |
US8458805B2 (en) | 2025-08-07 | 2025-08-07 | Architecture Technology Corporation | Digital forensic analysis using empirical privilege profiling (EPP) for filtering collected data |
US7380205B2 (en) | 2025-08-07 | 2025-08-07 | Sap Ag | Maintenance of XML documents |
US20080288889A1 (en) | 2025-08-07 | 2025-08-07 | Herbert Dennis Hunt | Data visualization application |
WO2005091901A2 (en) | 2025-08-07 | 2025-08-07 | Enterasys Networks, Inc. | Dynamic network detection system and method |
CN101084496B (en) | 2025-08-07 | 2025-08-07 | 波士顿咨询集团公司 | Method and apparatus for selecting, analyzing, and visualizing related database records as a network |
US8418246B2 (en) | 2025-08-07 | 2025-08-07 | Verizon Patent And Licensing Inc. | Geographical threat response prioritization mapping system and methods of use |
US8631493B2 (en) | 2025-08-07 | 2025-08-07 | Verizon Patent And Licensing Inc. | Geographical intrusion mapping system using telecommunication billing and inventory systems |
US7739670B2 (en) | 2025-08-07 | 2025-08-07 | Sap Ag | System and method for transforming information between data formats |
US7756809B2 (en) | 2025-08-07 | 2025-08-07 | Sap Ag | Apparatus and product of manufacture using execution points to select conditions and rules for business transaction processing |
US7457792B2 (en) | 2025-08-07 | 2025-08-07 | Sap Ag | Customizing transaction processing in a computer application by using pre-defined functions |
US7457793B2 (en) | 2025-08-07 | 2025-08-07 | Sap Ag | Investigating execution of a customized transaction process in a computer application |
US7457794B2 (en) | 2025-08-07 | 2025-08-07 | Sap Ag | Searching for customized processing rules for a computer application |
US7761396B2 (en) | 2025-08-07 | 2025-08-07 | Sap Ag | Apparatus and product of manufacture for adaptive business transaction rule structures |
US7756808B2 (en) | 2025-08-07 | 2025-08-07 | Sap Ag | Apparatus and product of manufacture for using condition data structures separately from rule data structures in business transactions |
US7624092B2 (en) | 2025-08-07 | 2025-08-07 | Sap Aktiengesellschaft | Concept-based content architecture |
US7545969B2 (en) | 2025-08-07 | 2025-08-07 | Alliant Techsystems Inc. | Method and system for wide-area ultraviolet detection of forensic evidence |
US7934257B1 (en) | 2025-08-07 | 2025-08-07 | Symantec Corporation | On-box active reconnaissance |
US20060218140A1 (en) | 2025-08-07 | 2025-08-07 | Battelle Memorial Institute | Method and apparatus for labeling in steered visual analysis of collections of documents |
US7979457B1 (en) | 2025-08-07 | 2025-08-07 | Kayak Software Corporation | Efficient search of supplier servers based on stored search results |
US20120271748A1 (en) | 2025-08-07 | 2025-08-07 | Disalvo Dean F | Engineering process for a real-time user-defined data collection, analysis, and optimization tool (dot) |
US7627544B2 (en) | 2025-08-07 | 2025-08-07 | Microsoft Corporation | Recognizing event patterns from event streams |
US20070073519A1 (en) | 2025-08-07 | 2025-08-07 | Long Kurt J | System and Method of Fraud and Misuse Detection Using Event Logs |
GB2428953A (en) | 2025-08-07 | 2025-08-07 | Ibm | Identifying remote objects on a client system GUI |
US7908357B2 (en) | 2025-08-07 | 2025-08-07 | Battelle Memorial Institute | Methods and systems for detecting abnormal digital traffic |
US20070115998A1 (en) | 2025-08-07 | 2025-08-07 | Mcelligott Adrian E | Method and software product for identifying network devices having a common geographical locale |
US7756834B2 (en) | 2025-08-07 | 2025-08-07 | I365 Inc. | Malware and spyware attack recovery system and method |
US7961633B2 (en) | 2025-08-07 | 2025-08-07 | Sanjeev Shankar | Method and system for real time detection of threats in high volume data streams |
US8584226B2 (en) | 2025-08-07 | 2025-08-07 | Iorhythm, Inc. | Method and apparatus for geographically regulating inbound and outbound network communications |
AU2006100099A4 (en) | 2025-08-07 | 2025-08-07 | Pc Tools Technology Pty Limited | Automated Threat Analysis System |
US7783723B2 (en) | 2025-08-07 | 2025-08-07 | Sap Ag | Systems and methods for submitting data from a WML-based browser |
US8001549B2 (en) | 2025-08-07 | 2025-08-07 | Panasonic Corporation | Multithreaded computer system and multithread execution control method |
US7934253B2 (en) | 2025-08-07 | 2025-08-07 | Trustwave Holdings, Inc. | System and method of securing web applications across an enterprise |
US20080033966A1 (en) | 2025-08-07 | 2025-08-07 | Mark Frederick Wahl | System and method for recovery detection in a distributed directory service |
US7872982B2 (en) | 2025-08-07 | 2025-08-07 | International Business Machines Corporation | Implementing an error log analysis model to facilitate faster problem isolation and repair |
WO2008051736A2 (en) | 2025-08-07 | 2025-08-07 | Honeywell International Inc. | Architecture for unified threat management |
US20080163085A1 (en) | 2025-08-07 | 2025-08-07 | Rajesh Venkat Subbu | Multi-criteria decision support tool interface, methods and apparatus |
US7908660B2 (en) | 2025-08-07 | 2025-08-07 | Microsoft Corporation | Dynamic risk management |
US9922323B2 (en) | 2025-08-07 | 2025-08-07 | Visa International Service Association | System and method for automated analysis comparing a wireless device location with another geographic location |
US7971209B2 (en) | 2025-08-07 | 2025-08-07 | Sap Ag | Shortcut in reliable communication |
US20080295173A1 (en) | 2025-08-07 | 2025-08-07 | Tsvetomir Iliev Tsvetanov | Pattern-based network defense mechanism |
US8051034B2 (en) | 2025-08-07 | 2025-08-07 | Sap Ag | Parallel processing of assigned table partitions |
US20080320552A1 (en) | 2025-08-07 | 2025-08-07 | Tarun Kumar | Architecture and system for enterprise threat management |
US20090049518A1 (en) | 2025-08-07 | 2025-08-07 | Innopath Software, Inc. | Managing and Enforcing Policies on Mobile Devices |
US8892454B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Configuration of web services |
US8013738B2 (en) | 2025-08-07 | 2025-08-07 | Kd Secure, Llc | Hierarchical storage manager (HSM) for intelligent storage of large volumes of data |
US9843596B1 (en) | 2025-08-07 | 2025-08-07 | ThetaRay Ltd. | Anomaly detection in dynamically evolving data and systems |
US9148488B2 (en) | 2025-08-07 | 2025-08-07 | Sap Ag | Configuration domains for the configuration of web services and consumer proxies |
US9336385B1 (en) | 2025-08-07 | 2025-08-07 | Adaptive Cyber Security Instruments, Inc. | System for real-time threat detection and management |
US8850409B2 (en) | 2025-08-07 | 2025-08-07 | Optumsoft, Inc. | Notification-based constraint set translation to imperative execution |
US8238922B2 (en) | 2025-08-07 | 2025-08-07 | Microsoft Corporation | Location-based address normalization |
EP2340476A4 (en) | 2025-08-07 | 2025-08-07 | Arcsight Inc | Storing log data efficiently while supporting querying |
US8484726B1 (en) | 2025-08-07 | 2025-08-07 | Zscaler, Inc. | Key security indicators |
US20100114832A1 (en) | 2025-08-07 | 2025-08-07 | Lillibridge Mark D | Forensic snapshot |
US8661103B2 (en) | 2025-08-07 | 2025-08-07 | Sap Ag | Business application address determination |
US8973112B2 (en) | 2025-08-07 | 2025-08-07 | Verizon Patent And Licensing Inc. | System and method for providing a normalized security list |
EP2406717A4 (en) | 2025-08-07 | 2025-08-07 | Univ Rutgers | SYSTEMS AND METHODS FOR DETECTING MALWARE SOFTWARE |
US8560471B2 (en) | 2025-08-07 | 2025-08-07 | Yaacov Shama | Systems and methods for generating leads in a network by predicting properties of external nodes |
KR101390957B1 (en) | 2025-08-07 | 2025-08-07 | ??? ????? ???. | Monitoring and tracking athletic activity |
US8549650B2 (en) | 2025-08-07 | 2025-08-07 | Tenable Network Security, Inc. | System and method for three-dimensional visualization of vulnerability and asset data |
WO2011158418A1 (en) | 2025-08-07 | 2025-08-07 | パナソニック株式会社 | Content processing execution device, content processing execution method, and programme |
US9106697B2 (en) | 2025-08-07 | 2025-08-07 | NeurallQ, Inc. | System and method for identifying unauthorized activities on a computer system using a data structure model |
US9384112B2 (en) | 2025-08-07 | 2025-08-07 | Logrhythm, Inc. | Log collection, structuring and processing |
CA2816298A1 (en) | 2025-08-07 | 2025-08-07 | Mark Lowell Tucker | System and method for securing virtual computing environments |
US8429124B2 (en) | 2025-08-07 | 2025-08-07 | Neustar Information Services, Inc. | On demand multi-location large database synchronization system |
WO2012103236A1 (en) | 2025-08-07 | 2025-08-07 | Viaforensics, Llc | Systems, methods, apparatuses, and computer program products for forensic monitoring |
US8800045B2 (en) | 2025-08-07 | 2025-08-07 | Achilles Guard, Inc. | Security countermeasure management platform |
US8554907B1 (en) | 2025-08-07 | 2025-08-07 | Trend Micro, Inc. | Reputation prediction of IP addresses |
US8990157B2 (en) | 2025-08-07 | 2025-08-07 | Sybase, Inc. | Replication support for structured data |
US9262519B1 (en) | 2025-08-07 | 2025-08-07 | Sumo Logic | Log data analysis |
US8786782B2 (en) | 2025-08-07 | 2025-08-07 | Disney Enterprises, Inc. | Multiple-input configuration and playback video enhancement |
US8970595B2 (en) | 2025-08-07 | 2025-08-07 | Microsoft Corporation | Display and interaction with multidimensional data |
US8973147B2 (en) | 2025-08-07 | 2025-08-07 | Mcafee, Inc. | Geo-mapping system security events |
US9129108B2 (en) | 2025-08-07 | 2025-08-07 | International Business Machines Corporation | Systems, methods and computer programs providing impact mitigation of cyber-security failures |
US9170951B1 (en) | 2025-08-07 | 2025-08-07 | Emc Corporation | Method and apparatus for event/alert enrichment |
US9092616B2 (en) | 2025-08-07 | 2025-08-07 | Taasera, Inc. | Systems and methods for threat identification and remediation |
US20130304665A1 (en) | 2025-08-07 | 2025-08-07 | Sap Ag | Managing Information Exchange Between Business Entities |
US20130304666A1 (en) | 2025-08-07 | 2025-08-07 | Sap Ag | Managing Information Exchange Between Business Entities |
US8775671B2 (en) | 2025-08-07 | 2025-08-07 | Sap Ag | Managing information exchange between business entities |
US9037678B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Distribution of messages in system landscapes |
US9503463B2 (en) | 2025-08-07 | 2025-08-07 | Zimperium, Inc. | Detection of threats to networks, based on geographic location |
US10181106B2 (en) | 2025-08-07 | 2025-08-07 | Ophio Software, Inc. | Methods for processing information associated with sales force management, customer relationship management and professional services management systems |
US20130326079A1 (en) | 2025-08-07 | 2025-08-07 | Sap Ag | Unifying Programming Models in Connectivity Framework |
US9348665B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Mapping messages between web services |
US8954602B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Facilitating communication between enterprise software applications |
US9595049B2 (en) | 2025-08-07 | 2025-08-07 | Retailmenot, Inc. | Cross-device geolocation sensing to geotarget offers |
US9116906B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Centralized read access logging |
US9112895B1 (en) | 2025-08-07 | 2025-08-07 | Emc Corporation | Anomaly detection system for enterprise network security |
US20130347111A1 (en) | 2025-08-07 | 2025-08-07 | Zimperium | System and method for detection and prevention of host intrusions and malicious payloads |
EP2880820A4 (en) | 2025-08-07 | 2025-08-07 | Hewlett Packard Development Co | Pattern consolidation to identify malicious activity |
US20140047413A1 (en) | 2025-08-07 | 2025-08-07 | Modit, Inc. | Developing, Modifying, and Using Applications |
US9258321B2 (en) | 2025-08-07 | 2025-08-07 | Raytheon Foreground Security, Inc. | Automated internet threat detection and mitigation system and associated methods |
US10530894B2 (en) | 2025-08-07 | 2025-08-07 | Exaptive, Inc. | Combinatorial application framework for interoperability and repurposing of code components |
US9075633B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Configuration of life cycle management for configuration files for an application |
US9678986B2 (en) | 2025-08-07 | 2025-08-07 | Wgrs Licensing Company, Llc | Systems and methods for registering, administering, and using non-locational identifiers as locational addresses through location name and identifier registries |
WO2014094151A1 (en) | 2025-08-07 | 2025-08-07 | Seccuris Inc. | System and method for monitoring data in a client environment |
EP2946332B1 (en) | 2025-08-07 | 2025-08-07 | Palo Alto Networks (Israel Analytics) Ltd | Automated forensics of computer systems using behavioral intelligence |
WO2014119669A1 (en) | 2025-08-07 | 2025-08-07 | 日本電信電話株式会社 | Log analysis device, information processing method and program |
US9690931B1 (en) | 2025-08-07 | 2025-08-07 | Facebook, Inc. | Database attack detection tool |
WO2014145626A1 (en) | 2025-08-07 | 2025-08-07 | Jon Rav Gagan SHENDE | Cloud forensics |
US9230106B2 (en) | 2025-08-07 | 2025-08-07 | Kaspersky Lab Ao | System and method for detecting malicious software using malware trigger scenarios in a modified computer environment |
RU2653985C2 (en) | 2025-08-07 | 2025-08-07 | Закрытое акционерное общество "Лаборатория Касперского" | Method and system for detecting malicious software by control of software implementation running under script |
US20150067880A1 (en) | 2025-08-07 | 2025-08-07 | Location Sentry Corp. | Location spoofing for privacy and security |
US10616258B2 (en) | 2025-08-07 | 2025-08-07 | Fortinet, Inc. | Security information and event management |
US9251011B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Backup of in-memory databases |
US10063654B2 (en) | 2025-08-07 | 2025-08-07 | Oracle International Corporation | Systems and methods for contextual and cross application threat detection and prediction in cloud applications |
US10367827B2 (en) | 2025-08-07 | 2025-08-07 | Splunk Inc. | Using network locations obtained from multiple threat lists to evaluate network data or machine data |
US10001389B1 (en) | 2025-08-07 | 2025-08-07 | EMC IP Holding Company LLC | Analysis of smart meter data based on frequency content |
US8984643B1 (en) | 2025-08-07 | 2025-08-07 | Risk I/O, Inc. | Ordered computer vulnerability remediation reporting |
US10289838B2 (en) | 2025-08-07 | 2025-08-07 | Entit Software Llc | Scoring for threat observables |
GB2524085B (en) | 2025-08-07 | 2025-08-07 | Advanced Risc Mach Ltd | Exception handling in microprocessor systems |
US9503421B2 (en) | 2025-08-07 | 2025-08-07 | Fortinet, Inc. | Security information and event management |
US9383934B1 (en) | 2025-08-07 | 2025-08-07 | Bitdefender IPR Management Ltd. | Bare-metal computer security appliance |
US20150281278A1 (en) | 2025-08-07 | 2025-08-07 | Southern California Edison | System For Securing Electric Power Grid Operations From Cyber-Attack |
US9424318B2 (en) | 2025-08-07 | 2025-08-07 | Tableau Software, Inc. | Systems and methods for ranking data visualizations |
US10013459B2 (en) | 2025-08-07 | 2025-08-07 | Conduent Business Services, Llc | Computer-implemented system and method for integrating human observations into analytics data |
US9330263B2 (en) | 2025-08-07 | 2025-08-07 | Intuit Inc. | Method and apparatus for automating the building of threat models for the public cloud |
EP3152697A4 (en) | 2025-08-07 | 2025-08-07 | Northrop Grumman Systems Corporation | System and method for real-time detection of anomalies in database usage |
US9565204B2 (en) | 2025-08-07 | 2025-08-07 | Empow Cyber Security Ltd. | Cyber-security system and methods thereof |
US9779150B1 (en) | 2025-08-07 | 2025-08-07 | Tableau Software, Inc. | Systems and methods for filtering data used in data visualizations that use relationships |
US9779147B1 (en) | 2025-08-07 | 2025-08-07 | Tableau Software, Inc. | Systems and methods to query and visualize data and relationships |
US9509715B2 (en) | 2025-08-07 | 2025-08-07 | Salesforce.Com, Inc. | Phishing and threat detection and prevention |
US20160065594A1 (en) | 2025-08-07 | 2025-08-07 | Verizon Patent And Licensing Inc. | Intrusion detection platform |
GB201415867D0 (en) | 2025-08-07 | 2025-08-07 | Purelifi Ltd | Cyber Security |
US10042908B2 (en) | 2025-08-07 | 2025-08-07 | Oracle International Corporation | Method and system for implementing a unified DB clone system |
US9584532B2 (en) | 2025-08-07 | 2025-08-07 | Ncr Corporation | Enterprise intrusion detection and remediation |
EP3021546B1 (en) | 2025-08-07 | 2025-08-07 | Institut Mines-Telecom / Telecom Sudparis | Selection of countermeasures against cyber attacks |
EP3026813B1 (en) | 2025-08-07 | 2025-08-07 | ABB Schweiz AG | Frequency converter |
GB2533086A (en) | 2025-08-07 | 2025-08-07 | Ibm | Controlling a multi-database system |
US9419989B2 (en) | 2025-08-07 | 2025-08-07 | Sophos Limited | Threat detection using URL cache hits |
CA2972382A1 (en) | 2025-08-07 | 2025-08-07 | Landmark Graphics Corporation | Apparatus and methods of data synchronization |
US9800605B2 (en) | 2025-08-07 | 2025-08-07 | Securonix, Inc. | Risk scoring for threat assessment |
US9509709B2 (en) | 2025-08-07 | 2025-08-07 | International Business Machines Corporation | Mechanism to augment IPS/SIEM evidence information with process history snapshot and application window capture history |
US10296346B2 (en) | 2025-08-07 | 2025-08-07 | Centipede Semi Ltd. | Parallelized execution of instruction sequences based on pre-monitoring |
US9588870B2 (en) | 2025-08-07 | 2025-08-07 | Microsoft Technology Licensing, Llc | Time travel debugging for browser components |
US10530831B2 (en) | 2025-08-07 | 2025-08-07 | Oracle International Corporation | Threat protection for real-time communications gateways |
US10154053B2 (en) | 2025-08-07 | 2025-08-07 | Cisco Technology, Inc. | Method and apparatus for grouping features into bins with selected bin boundaries for use in anomaly detection |
US9524389B1 (en) | 2025-08-07 | 2025-08-07 | Amazon Technologies, Inc. | Forensic instance snapshotting |
US10380616B2 (en) | 2025-08-07 | 2025-08-07 | Cheryl Parker | System and method for economic analytics and business outreach, including layoff aversion |
US20160364315A1 (en) | 2025-08-07 | 2025-08-07 | Arizona Board Of Regents On Behalf Of Arizona State University | Fast data race detection for multicore systems |
US10043006B2 (en) | 2025-08-07 | 2025-08-07 | Accenture Global Services Limited | Event anomaly analysis and prediction |
US20160381049A1 (en) | 2025-08-07 | 2025-08-07 | Ss8 Networks, Inc. | Identifying network intrusions and analytical insight into the same |
US10382469B2 (en) | 2025-08-07 | 2025-08-07 | Rapid7, Inc. | Domain age registration alert |
WO2017019684A1 (en) | 2025-08-07 | 2025-08-07 | Datagrid Systems, Inc. | Techniques for evaluating server system reliability, vulnerability and component compatibility using crowdsourced server and vulnerability data |
US9885776B2 (en) | 2025-08-07 | 2025-08-07 | Raytheon Company | Electronic enhanced receiver scheduler system |
US10389745B2 (en) | 2025-08-07 | 2025-08-07 | Stc.Unm | System and methods for detecting bots real-time |
US9794158B2 (en) | 2025-08-07 | 2025-08-07 | Uber Technologies, Inc. | System event analyzer and outlier visualization |
US10275301B2 (en) | 2025-08-07 | 2025-08-07 | International Business Machines Corporation | Detecting and analyzing performance anomalies of client-server based applications |
US9888024B2 (en) | 2025-08-07 | 2025-08-07 | Symantec Corporation | Detection of security incidents with low confidence security events |
US10140447B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Attack pattern framework for monitoring enterprise information systems |
US9979741B2 (en) | 2025-08-07 | 2025-08-07 | Netsec Concepts, Llc | Malware beaconing detection methods |
US10127115B2 (en) | 2025-08-07 | 2025-08-07 | Microsoft Technology Licensing, Llc | Generation and management of social graph |
US10009364B2 (en) | 2025-08-07 | 2025-08-07 | Cisco Technology, Inc. | Gathering flow characteristics for anomaly detection systems in presence of asymmetrical routing |
US10079842B1 (en) | 2025-08-07 | 2025-08-07 | Amazon Technologies, Inc. | Transparent volume based intrusion detection |
US10148675B1 (en) | 2025-08-07 | 2025-08-07 | Amazon Technologies, Inc. | Block-level forensics for distributed computing systems |
US10650558B2 (en) | 2025-08-07 | 2025-08-07 | Palantir Technologies Inc. | Techniques for displaying stack graphs |
US9967267B2 (en) | 2025-08-07 | 2025-08-07 | Sophos Limited | Forensic analysis of computing activity |
US10108632B2 (en) | 2025-08-07 | 2025-08-07 | Google Llc | Splitting and moving ranges in a distributed system |
US10536476B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Realtime triggering framework |
US20180027002A1 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Outlier detection in enterprise threat detection |
US10482241B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Visualization of data distributed in multiple dimensions |
US10542016B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Location enrichment in enterprise threat detection |
US10630705B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Real-time push API for log events in enterprise threat detection |
US10673879B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Snapshot of a forensic investigation for enterprise threat detection |
US10534908B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Alerts based on entities in security information and event management products |
US10530792B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Using frequency analysis in enterprise threat detection to detect intrusions in a computer system |
US10534907B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Providing semantic connectivity between a java application server and enterprise threat detection system using a J2EE data |
US11470094B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Bi-directional content replication logic for enterprise threat detection |
US10552605B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Anomaly detection in enterprise threat detection |
US20190005423A1 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Calculation and visualization of security risks in enterprise threat detection |
US10102379B1 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Real-time evaluation of impact- and state-of-compromise due to vulnerabilities described in enterprise threat detection security notes |
US10530794B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Pattern creation in enterprise threat detection |
-
2016
- 2025-08-07 US US15/383,771 patent/US10764306B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030115484A1 (en) * | 2025-08-07 | 2025-08-07 | Moriconi Mark S. | System and method for incrementally distributing a security policy in a computer network |
US20060161816A1 (en) * | 2025-08-07 | 2025-08-07 | Gula Ronald J | System and method for managing events |
US20070150596A1 (en) * | 2025-08-07 | 2025-08-07 | Microsoft Corporation | Content Publication |
US20090300045A1 (en) * | 2025-08-07 | 2025-08-07 | Safe Channel Inc. | Distributed security provisioning |
US20120167161A1 (en) * | 2025-08-07 | 2025-08-07 | Electronics And Telecommunications Research Institute | Apparatus and method for controlling security condition of global network |
US20120271790A1 (en) * | 2025-08-07 | 2025-08-07 | Yahoo! Inc. | System and method for mining tags using social endorsement networks |
US20160366174A1 (en) * | 2025-08-07 | 2025-08-07 | Soltra Solutions, Llc | Computerized system and method for securely distributing and exchanging cyber-threat information in a standardized format |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11012465B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Realtime triggering framework |
US10536476B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Realtime triggering framework |
US10482241B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Visualization of data distributed in multiple dimensions |
US10542016B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Location enrichment in enterprise threat detection |
US10673879B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Snapshot of a forensic investigation for enterprise threat detection |
US10630705B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Real-time push API for log events in enterprise threat detection |
US10534908B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Alerts based on entities in security information and event management products |
US10530792B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Using frequency analysis in enterprise threat detection to detect intrusions in a computer system |
US10534907B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Providing semantic connectivity between a java application server and enterprise threat detection system using a J2EE data |
US20180176238A1 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Using frequency analysis in enterprise threat detection to detect intrusions in a computer system |
US10552605B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Anomaly detection in enterprise threat detection |
US11093608B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Anomaly detection in enterprise threat detection |
US11470094B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Bi-directional content replication logic for enterprise threat detection |
US10530794B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Pattern creation in enterprise threat detection |
US11128651B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Pattern creation in enterprise threat detection |
US10681064B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Analysis of complex relationships among information technology security-relevant entities using a network graph |
US10986111B2 (en) | 2025-08-07 | 2025-08-07 | Sap Se | Displaying a series of events along a time axis in enterprise threat detection |
US20220137600A1 (en) * | 2025-08-07 | 2025-08-07 | Schneider Electric Industries Sas | Iot gateway for industrial control systems, associated devices, systems and methods |
US12238134B1 (en) * | 2025-08-07 | 2025-08-07 | Eygs Llp | Automated discovery and evaluation of vulnerability hotspots in computer networks |
Also Published As
Publication number | Publication date |
---|---|
US10764306B2 (en) | 2025-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10764306B2 (en) | Distributing cloud-computing platform content to enterprise threat detection systems | |
US10275346B2 (en) | Automatic testing of disaster recovery scenarios in cloud environments | |
US10630705B2 (en) | Real-time push API for log events in enterprise threat detection | |
US10542016B2 (en) | Location enrichment in enterprise threat detection | |
US11470094B2 (en) | Bi-directional content replication logic for enterprise threat detection | |
US10742640B2 (en) | Identification of a related computing device for automatic account login | |
US10659449B2 (en) | Application managed service instances | |
US11012465B2 (en) | Realtime triggering framework | |
US10534907B2 (en) | Providing semantic connectivity between a java application server and enterprise threat detection system using a J2EE data | |
US20190005423A1 (en) | Calculation and visualization of security risks in enterprise threat detection | |
US9178698B1 (en) | Dynamic key management | |
US9524147B2 (en) | Entity-based cross-application navigation | |
US12013933B2 (en) | Enhancing security using anomaly detection | |
US20150006979A1 (en) | Providing an error log to a mobile device | |
US11238462B2 (en) | Success rate of an online transaction | |
US20210294888A1 (en) | Login to a suspended account | |
US10289725B2 (en) | Enterprise data warehouse model federation | |
US20210028986A1 (en) | Real-time configuration check framework | |
US11256751B2 (en) | Domain specific language for cloud hosted systems with metric-based state | |
EP3562117B1 (en) | Pluggable framework for as4 adapter generation | |
US10104200B2 (en) | Automatic service extensibility | |
US10270672B2 (en) | Collecting information for tracing in a complex computing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SAP SE, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAM, THANH-PHONG;BAUMGART, JENS;KRAEMER, FLORIAN;AND OTHERS;REEL/FRAME:041504/0761 Effective date: 20170123 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |