水指什么生肖| 什么叫萎缩性胃炎| 洗手做羹汤是什么意思| 一产二产三产分别包括什么| 烫伤用什么消毒| 许莫氏结节是什么| 系列是什么意思| 2月18日什么星座| 缺蛋白质吃什么补得快| 辅酶q10什么价格| 变态什么意思| 小猪佩奇为什么这么火| 千呼万唤是什么生肖| 吃榴莲有什么好处| 心跳慢是什么原因| 瑞五行属什么| 董酒是什么香型| 醋酸泼尼松片治什么病| 囊性结节是什么| 茶水洗脸有什么好处和坏处| 糖耐主要是检查什么| 肺结节钙化是什么意思| 女人小便出血是什么原因| 蒲公英的花是什么颜色| 汧是什么意思| 牙体牙髓科看什么| 画画用什么铅笔| AX是什么意思| 单脐动脉对胎儿有什么影响| 多动症是什么原因造成的| 什么是耽美| 鸟喙是什么意思| 开塞露属于什么剂型| 什么是企业年金| 济公是什么生肖| 眼睛眼屎多是什么原因| 三跪九叩是什么意思| 乙醇和酒精有什么区别| 田宅宫代表什么| 止痛片吃多了有什么副作用| 2月20日是什么星座| 说一个人轴是什么意思| crp是什么| 益生菌有什么作用| 藤壶是什么| 清肺火吃什么药| 皮肤挂什么科| 吃什么水果对眼睛好| 为什么用英语怎么说| 福瑞祥和是什么意思| 海燕是什么鸟| 月经褐色是什么原因| 故事情节是什么意思| 耳朵疼什么原因| 阴道炎吃什么药好| 蝉鸣是什么季节| 检查肺挂什么科| 火钳刘明什么意思| 菩提子是什么材质| 二米饭是什么| 迷恋一个人说明什么| 中国最长的河流是什么河| 夕阳朝乾是什么意思| 翳是什么意思| 闹觉是什么意思| 下肢血栓吃什么药| 鸡属于什么科| 肝在五行中属什么| 什么是心理健康| 宫颈息肉是什么原因引起的| 面黄肌瘦是什么意思| 盆腔积液是什么原因| 46岁属什么| 心绞痛是什么病| 外阴长什么样| 什么是金砖国家| 567是什么意思| 息肉是什么病| 什么米好吃| 蓝脸的窦尔敦盗御马是什么歌| 办理健康证需要什么| 无菌敷贴是干什么用的| 美国为什么要打伊朗| 甲流吃什么药| 心功能不全是什么意思| 拉肚子去医院挂什么科| 为什么闭眼单脚站不稳| 为什么空调不制冷| 烤瓷牙和全瓷牙有什么区别| 舌苔发黑是什么原因| 拜阿司匹林什么时间吃最好| 色彩斑斓是什么意思| 睡觉起来嘴巴苦是什么原因| 什么是闰年什么是平年| 男性什么适合长期泡水喝| 齐天大圣是什么级别| 9月份是什么星座| 四维彩超主要检查什么| 银行卡户名是什么意思| 拜观音菩萨有什么讲究| 眼镜是什么时候发明的| 小腿怕冷是什么原因| 三公经费指什么| 什么和什么| 安利什么意思| 做梦买房子是什么预兆| 吃什么补充dha| 一什么眼镜| 日值上朔是什么意思| 打嗝用什么药| 女单读什么| 梦见死人复活什么预兆| 牙齿根管治疗是什么意思| 腋下疼痛什么原因| 什么蔬菜含维生素c最多| 什么是肝硬化| 711是什么星座| 母仪天下什么意思| 月经期间吃什么| 武则天属什么生肖| 浪子是什么意思| 净身出户需要什么条件| 女性憋不住尿是什么原因| 和胃降逆是什么意思| 秋天穿什么衣服| lhrh是什么激素| g750是什么金| 3月16号是什么星座| 众叛亲离是什么意思| 朱祁镇为什么杀于谦| 金晨为什么叫大喜| 心脏为什么会跳动| 耳鸣耳聋吃什么药| 止痛片吃多了有什么副作用| 月经一直不干净是什么原因引起的| 湿热内蕴证有什么症状| 绣眼鸟吃什么| 做梦梦到已故的亲人是什么意思| 胎动少是什么原因| 不自主的摇头是什么病| 胃寒吃什么可以暖胃| 肠炎吃什么食物| 月经量少吃什么| 大便绿色的是什么原因| 梦见小老鼠是什么征兆| 腰眼疼是什么原因引起的| 小腿前面的骨头叫什么| 肝内高回声是什么意思| 梦到女孩子有什么预兆| 姘头是什么意思| 打呼噜吃什么| model是什么品牌| 脂肪肝吃什么药效果好| RH是什么| 吃什么水果对肾有好处| 头疼一般是什么原因引起的| 生完孩子可以吃什么水果| 羊水破了是什么症状| 招风耳适合什么发型| 肝在人体什么位置| 黄晓明和杨颖什么时候结婚的| 夜莺是什么鸟| 富贵包去医院挂什么科| ct检查是什么意思| 一笑了之是什么意思| 隐血是什么意思| 15度穿什么衣服合适| 肠梗阻是什么原因引起的| 羊内腰和外腰分别是什么| 金酒属于什么酒| 早晨起床口干口苦是什么原因| 龙年是什么年| 六月份出生的是什么星座| 什么动物有三个心脏| 顾虑是什么意思| ash是什么牌子| 什么药| 什么肠什么肚| 短兵相见是什么意思| 长痘要忌口什么东西| 胃不舒服吃什么水果好| 嘢是什么意思| 130是什么意思| 长痱子用什么药| 目鱼和墨鱼有什么区别| 科目一考试需要带什么| 答谢宴是什么意思| 铁皮石斛花有什么作用| 为什么一躺下就鼻塞| 游离前列腺特异性抗原是什么意思| 梦见吃饭是什么预兆| 每天都做梦是什么原因| 缠腰龙是什么病| 月经先期是什么意思| 棉絮是什么意思| 云为什么是白色的| 两个a是什么牌子| 上焦有火吃什么中成药| 办理暂住证需要什么材料| 晚上睡不着白天睡不醒是什么原因| 悔教夫婿觅封侯是什么意思| 荷尔蒙是什么东西| 什么是土象星座| 药流没流干净有什么症状| 老年骨质疏松疼痛有什么好疗法| 周杰伦为什么喜欢昆凌| 血常规检查能查出什么| 惊艳是什么意思| 5.19是什么星座| 前列腺钙化是什么原因引起的| 什么是心脑血管疾病| 愚痴是什么意思| 宝宝发烧是什么原因引起的| 古埃及是什么人种| 巨蟹座幸运花是什么| 为什么晚上不能剪指甲| 平起平坐代表什么生肖| 小麦什么时候收割| 请节哀是什么意思| 艸是什么意思| 膝盖不好的人适合什么运动| 左侧卵巢内囊性回声是什么意思| 蓁字五行属什么| 晚饭适合吃什么| 测骨龄去医院挂什么科| 黄昏是什么时候| 人生只剩归途什么意思| 侍中是什么官| 三月份生日是什么星座| 吃什么能长头发| 什么是尿频| 石光荣是什么军衔| 一是什么动物| 抗皱用什么产品好| 碱面是什么| 打呼噜挂什么科| 孕妇血压低吃什么能补上来| 什么东西能吃不能碰| 农历六月六日是什么节日| 为什么经常做梦| 衿字五行属什么| 肚子疼喝什么药| 2019年是什么生肖| 马齿苋有什么功效| 月经不调吃什么调理| 肛门挂什么科| 角加斗读什么| 血压低吃什么中成药| 促甲状腺激素低是什么原因| 6.12是什么星座| 补肾吃什么食物| 主动脉夹层是什么意思| 大学生村官是什么编制| 中耳炎吃什么药效果好| 兵工厂属于什么单位| 江浙沪是什么意思| 你问我爱你有多深是什么歌| 软冷冻室一般放什么东西| 吃什么对脾胃有好处| 月经腰疼是什么原因引起的| 感恩节是什么时候| emma什么意思| 吃炒黑豆有什么好处和坏处| 痱子是什么样的图片| 百度

多彩贵州满意旅游痛客行和入境旅游产品设计赛将启动

Generating diverse smart replies using synonym hierarchy Download PDF

Info

Publication number
US11334714B2
US11334714B2 US17/352,978 US202117352978A US11334714B2 US 11334714 B2 US11334714 B2 US 11334714B2 US 202117352978 A US202117352978 A US 202117352978A US 11334714 B2 US11334714 B2 US 11334714B2
Authority
US
United States
Prior art keywords
replies
smart
computing device
user
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US17/352,978
Other versions
US20210312126A1 (en
Inventor
Jeffrey William Pasternack
Arpit Dhariwal
Bing Zhao
Nimesh Madhavan Chakravarthi
Nandeesh Channabasappa Rajashekar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Microsoft Technology Licensing LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Technology Licensing LLC filed Critical Microsoft Technology Licensing LLC
Priority to US17/352,978 priority Critical patent/US11334714B2/en
Publication of US20210312126A1 publication Critical patent/US20210312126A1/en
Assigned to MICROSOFT TECHNOLOGY LICENSING, LLC reassignment MICROSOFT TECHNOLOGY LICENSING, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHAKRAVARTHI, Nimesh Madhavan, CHANNABASAPPA RAJASHEKAR, NANDEESH, ZHAO, BING, DHARIWAL, ARPIT, PASTERNACK, JEFFREY WILLIAM
Application granted granted Critical
Publication of US11334714B2 publication Critical patent/US11334714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/237Lexical tools
    • G06F40/247Thesauruses; Synonyms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY?PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/22Indexing; Data structures therefor; Storage structures
    • G06F16/2228Indexing structures
    • G06F16/2246Trees, e.g. B+trees
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/0482Interaction with lists of selectable items, e.g. menus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/30Semantic analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/30Semantic analysis
    • G06F40/35Discourse or dialogue representation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/40Processing or translation of natural language
    • G06F40/55Rule-based translation
    • G06F40/56Natural language generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY?PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/107Computer-aided management of electronic mailing [e-mailing]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY?PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/01Social networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements

Definitions

  • the present application relates generally to systems, methods, and computer program products for reducing the consumption of electronic resources in generating diverse smart replies for a user using synonym hierarchy graphs.
  • Generating suggested replies to messages can drain electronic resources by placing a heavy load of computational expense on the computer system that is generating the suggested replies.
  • the computer system may have to evaluate a vast number of parameters for a model and may require a large amount of training data for each and every user.
  • available space on a display screen can be limited, particularly with display screens of mobile devices. Computer systems may waste this importance space on the display screen by displaying an excessive number of redundant smart replies. Other technical problems may arise as well.
  • FIG. 1 is a block diagram illustrating a client-server system, in accordance with an example embodiment.
  • FIG. 2 is a block diagram showing the functional components of a social networking service within a networked system, in accordance with an example embodiment.
  • FIG. 3 illustrates generated smart replies being displayed as selectable options for replying to messages within a graphical user interface (GUI) on a display screen of a mobile device, in accordance with an example embodiment.
  • GUI graphical user interface
  • FIG. 4 illustrates a result of one of the generated smart replies being selected, in accordance with an example embodiment.
  • FIG. 5 illustrates another result of one of the generated smart replies being selected, in accordance with an example embodiment.
  • FIG. 6 is a block diagram illustrating a communication system, in accordance with an example embodiment.
  • FIG. 7 illustrates a hierarchical graph of synonym replies, in accordance with an example embodiment.
  • FIG. 8 illustrates generated smart reply categories being displayed as selectable options for replying to messages within a GUI on a display screen of a mobile device, in accordance with an example embodiment.
  • FIG. 9 illustrates a result of one of the generated smart reply categories being selected, in accordance with an example embodiment.
  • FIG. 10 is a flowchart illustrating a method of generating smart replies, in accordance with an example embodiment.
  • FIG. 11 is a flowchart illustrating a method of generating smart follow-up contents, in accordance with an example embodiment.
  • FIG. 12 is a block diagram illustrating a mobile device, in accordance with some example embodiments.
  • FIG. 13 is a block diagram of an example computer system on which methodologies described herein may be executed, in accordance with an example embodiment.
  • Example methods and systems of generating diverse smart replies for a user using synonym hierarchy graphs are disclosed.
  • numerous specific details are set forth in order to provide a thorough understanding of example embodiments. It will be evident, however, to one skilled in the art that the present embodiments may be practiced without these specific details.
  • operations are performed by a computer system (or other machine) having a memory and at least one hardware processor, with the operations comprising: detecting that a first set of one or more messages having first content has been transmitted from a first computing device of a first user to a second computing device of a second user; determining a plurality of candidate replies based on the first content of the first set of one or more messages; selecting a plurality of smart replies from the plurality of candidate replies using a hierarchical graph data structure and at least one diversity rule, the hierarchical graph data structure comprising a tree of concepts ranging from a root node to a plurality of leaf nodes with at least one intermediate node in between the root node and each one of the plurality of leaf nodes, each one of the plurality of smart replies being represented by a corresponding one of the plurality of leaf nodes in the hierarchical graph data structure, the selecting the plurality of smart replies comprising omitting at least one of the plurality of candidate replies from selection to be included in the pluralit
  • the operations further comprise: receiving a user selection of one of the plurality of smart replies from the second computing device; and transmitting a second message including the selected one of the plurality of smart replies to the first computing device in response to the receiving of the user selection.
  • the operations further comprise: selecting a plurality of smart follow-up content from a plurality of candidate follow-up content in response to the transmitting of the second message including the selected one of the plurality of smart replies to the first computing device, the selecting of the plurality of smart follow-up content being based on at least one of the selected one of the plurality of smart replies and the first content of the first set of one or more messages; and causing each one of the selected plurality of smart follow-up content to be displayed on the second computing device of the second user as a corresponding selectable user interface element.
  • the selecting of the plurality of smart follow-up content comprises: determining the plurality of candidate follow-up content based on at least one of the selected one of the plurality of smart replies and the first content of the first set of one or more messages; and selecting the plurality of smart follow-up content from the plurality of candidate follow-up content using the hierarchical graph data structure and the at least one diversity rule, each one of the plurality of smart follow-up content being represented by a corresponding one of the plurality of leaf nodes in the hierarchical graph data structure, the selecting of the plurality of smart follow-up content comprising omitting at least one of the plurality of candidate follow-up content from selection to be included in the plurality of smart follow-up content based on the at least one diversity rule, the at least one diversity rule limiting a number of the plurality of smart follow-up content that have a common parent node.
  • the operations further comprise: receiving another user selection of one of the plurality of smart follow-up content from the second computing device; and transmitting a third message including the selected one of the plurality of smart follow-up content to the first computing device in response to the receiving of the other user selection.
  • the first content of the first set of one or more messages comprises text.
  • each one of the plurality of smart replies comprises text.
  • the computer system comprises a remote server. In some example embodiments, the computer system comprises the second computing device.
  • the methods or embodiments disclosed herein may be implemented as a computer system having one or more modules (e.g., hardware modules or software modules). Such modules may be executed by one or more processors of the computer system.
  • the methods or embodiments disclosed herein may be embodied as instructions stored on a machine-readable medium that, when executed by one or more processors, cause the one or more processors to perform the instructions.
  • FIG. 1 is a block diagram illustrating a client-server system 100 , in accordance with an example embodiment.
  • a networked system 102 provides server-side functionality via a network 104 (e.g., the Internet or Wide Area Network (WAN)) to one or more clients.
  • FIG. 1 illustrates, for example, a web client 106 (e.g., a browser) and a programmatic client 108 executing on respective client machines 110 and 112 .
  • a web client 106 e.g., a browser
  • programmatic client 108 executing on respective client machines 110 and 112 .
  • An Application Program Interface (API) server 114 and a web server 116 are coupled to, and provide programmatic and web interfaces respectively to, one or more application servers 118 .
  • the application servers 118 host one or more applications 120 .
  • the application servers 118 are, in turn, shown to be coupled to one or more database servers 124 that facilitate access to one or more databases 126 . While the applications 120 are shown in FIG. 1 to form part of the networked system 102 , it will be appreciated that, in alternative embodiments, the applications 120 may form part of a service that is separate and distinct from the networked system 102 .
  • system 100 shown in FIG. 1 employs a client-server architecture
  • present disclosure is of course not limited to such an architecture, and could equally well find application in a distributed, or peer-to-peer, architecture system, for example.
  • the various applications 120 could also be implemented as standalone software programs, which do not necessarily have networking capabilities.
  • the web client 106 accesses the various applications 120 via the web interface supported by the web server 116 .
  • the programmatic client 108 accesses the various services and functions provided by the applications 120 via the programmatic interface provided by the API server 114 .
  • FIG. 1 also illustrates a third party application 128 , executing on a third party server machine 130 , as having programmatic access to the networked system 102 via the programmatic interface provided by the API server 114 .
  • the third party application 128 may, utilizing information retrieved from the networked system 102 , support one or more features or functions on a website hosted by the third party.
  • the third party website may, for example, provide one or more functions that are supported by the relevant applications of the networked system 102 .
  • any website referred to herein may comprise online content that may be rendered on a variety of devices, including but not limited to, a desktop personal computer, a laptop, and a mobile device (e.g., a tablet computer, smartphone, etc.).
  • a mobile device e.g., a tablet computer, smartphone, etc.
  • any of these devices may be employed by a user to use the features of the present disclosure.
  • a user can use a mobile app on a mobile device (any of machines 110 , 112 , and 130 may be a mobile device) to access and browse online content, such as any of the online content disclosed herein.
  • a mobile server e.g., API server 114
  • the networked system 102 may comprise functional components of a social networking service.
  • FIG. 2 is a block diagram showing the functional components of a social networking system 210 , including a data processing module referred to herein as a communication system 216 , for use in social networking system 210 , consistent with some embodiments of the present disclosure.
  • the communication system 216 resides on application server(s) 118 in FIG. 1 .
  • a front end may comprise a user interface module (e.g., a web server) 212 , which receives requests from various client-computing devices, and communicates appropriate responses to the requesting client devices.
  • the user interface module(s) 212 may receive requests in the form of Hypertext Transfer Protocol (HTTP) requests, or other web-based, application programming interface (API) requests.
  • HTTP Hypertext Transfer Protocol
  • API application programming interface
  • a member interaction detection module 213 may be provided to detect various interactions that members have with different applications, services and content presented. As shown in FIG. 2 , upon detecting a particular interaction, the member interaction detection module 213 logs the interaction, including the type of interaction and any meta-data relating to the interaction, in a member activity and behavior database 222 .
  • An application logic layer may include one or more various application server modules 214 , which, in conjunction with the user interface module(s) 212 , generate various user interfaces (e.g., web pages) with data retrieved from various data sources in the data layer.
  • individual application server modules 214 are used to implement the functionality associated with various applications and/or services provided by the social networking service.
  • the application logic layer includes the communication system 216 .
  • a data layer may include several databases, such as a database 218 for storing profile data, including both member profile data and profile data for various organizations (e.g., companies, schools, etc.).
  • a database 218 for storing profile data, including both member profile data and profile data for various organizations (e.g., companies, schools, etc.).
  • the person when a person initially registers to become a member of the social networking service, the person will be prompted to provide some personal information, such as his or her name, age (e.g., birthdate), gender, interests, contact information, home town, address, the names of the member's spouse and/or family members, educational background (e.g., schools, majors, matriculation and/or graduation dates, etc.), employment history, skills, professional organizations, and so on.
  • This information is stored, for example, in the database 218 .
  • the representative may be prompted to provide certain information about the organization.
  • This information may be stored, for example, in the database 218 , or another database (not shown).
  • the profile data may be processed (e.g., in the background or offline) to generate various derived profile data. For example, if a member has provided information about various job titles the member has held with the same company or different companies, and for how long, this information can be used to infer or derive a member profile attribute indicating the member's overall seniority level, or seniority level within a particular company.
  • importing or otherwise accessing data from one or more externally hosted data sources may enhance profile data for both members and organizations. For instance, with companies in particular, financial data may be imported from one or more external data sources, and made part of a company's profile.
  • one or more profile images e.g., photos of the member may be stored in the database 218 .
  • a member may invite other members, or be invited by other members, to connect via the social networking service.
  • a “connection” may require or indicate a bi-lateral agreement by the members, such that both members acknowledge the establishment of the connection.
  • a member may elect to “follow” another member.
  • the concept of “following” another member typically is a unilateral operation, and at least with some embodiments, does not require acknowledgement or approval by the member that is being followed.
  • the member who is following may receive status updates (e.g., in an activity or content stream) or other messages published by the member being followed, or relating to various activities undertaken by the member being followed.
  • the member when a member follows an organization, the member becomes eligible to receive messages or status updates published on behalf of the organization. For instance, messages or status updates published on behalf of an organization that a member is following will appear in the member's personalized data feed, commonly referred to as an activity stream or content stream.
  • the various associations and relationships that the members establish with other members, or with other entities and objects, are stored and maintained within a social graph, shown in FIG. 2 with database 220 .
  • the members' interactions and behavior may be tracked and information concerning the member's activities and behavior may be logged or stored, for example, as indicated in FIG. 2 by the database 222 . This logged activity information may then be used by the communication system 216 .
  • the members' interactions and behavior may also be tracked, stored, and used by a pre-fetch system 400 residing on a client device, such as within a browser of the client device, as will be discussed in further detail below.
  • databases 218 , 220 , and 222 may be incorporated into database(s) 126 in FIG. 1 .
  • other configurations are also within the scope of the present disclosure.
  • the social networking system 210 provides an application programming interface (API) module via which applications and services can access various data and services provided or maintained by the social networking service.
  • API application programming interface
  • an application may be able to request and/or receive one or more navigation recommendations.
  • Such applications may be browser-based applications, or may be operating system-specific.
  • some applications may reside and execute (at least partially) on one or more mobile devices (e.g., phone, or tablet computing devices) with a mobile operating system.
  • the applications or services that leverage the API may be applications and services that are developed and maintained by the entity operating the social networking service, other than data privacy concerns, nothing prevents the API from being provided to the public or to certain third-parties under special arrangements, thereby making the navigation recommendations available to third party applications and services.
  • the communication system 216 is referred to herein as being used in the context of a social networking service, it is contemplated that it may also be employed in the context of any website or online services. Additionally, features of the present disclosure can be used or presented in the context of a web page or any other user interface view, including, but not limited to, a user interface on a mobile device or on desktop software.
  • the communication system 216 is configured to generate a diverse set of smart replies for a user using a synonym hierarchy graph and at least one diversity rule that limits the number of smart replies that have a common parent node or that have some other common relationship with a particular node.
  • a smart reply is a suggested reply that is automatically generated by the communication system 216 and presented to a user in response to, or otherwise based on, a message sent to the user from another user (e.g., a text message transmitted from a first device of a first user to a second device of a second user).
  • FIG. 3 illustrates generated smart replies 330 being displayed as selectable options for replying to messages 310 within a graphical user interface (GUI) on a display screen 305 of a mobile device 300 , in accordance with an example embodiment.
  • GUI graphical user interface
  • a first user represented on the display screen 305 by icon 312 (e.g., a profile image of the first user)
  • icon 332 e.g., a profile image of the second user
  • the example conversations provided herein involve a first user and a second user, in some example embodiments, the conversations involve more than two users, such as with group conversations where three or more users are included in the same conversation thread.
  • the GUI provides a content entry field 320 configured to receive user-entered content (e.g., text, image) to be included in a reply message to the first user.
  • the GUI also provides a selectable user interface element 325 configured to trigger the transmission of the input received via the content entry field 320 to the first user.
  • the communication system 216 has generated smart replies 330 A, 330 B, and 330 C based on the content of one or more of the messages 310 .
  • the smart replies 330 A, 330 B, and 330 C are each displayed as a selectable user interface element that the second user may select to include as part of a reply message to the first user.
  • each one of the smart replies 330 A, 330 B, and 330 C may comprise a selectable user interface element configured to, in response to a user selection of the smart reply 330 via the corresponding selectable user interface element, transmit a reply message including the selected smart reply 330 to the computing device of the first user.
  • FIG. 4 illustrates a result of one of the generated smart replies 330 being selected by the second user, in accordance with an example embodiment.
  • the second user has selected (e.g., clicked on, tapped) the corresponding selectable user interface element of smart reply 330 B in FIG. 3 .
  • the communication system 216 has transmitted a reply message including the selected smart reply 330 B to the computing device of the first user, as shown by the smart reply 330 B being displayed as part of a conversation between the first user and the second user within the GUI on the display screen 305 .
  • the communication system 216 generates and displays a plurality of smart follow-up content 340 in response to the selection of one of the smart replies 330 or in response to the transmission of the second message including the selected smart reply 330 to the first computing device.
  • the plurality of smart follow-up content 340 may be determined based on at least one of the selected smart reply 330 and the content of the message 310 from the first computing device.
  • the communication system 216 has generated smart follow-up contents 340 A, 340 B, and 340 C based on any combination of one or more of the selected smart reply 330 B and the content of the message 310 from the first computing device.
  • the smart follow-up contents 340 A, 340 B, and 340 C are each displayed as a corresponding selectable user interface element that the second user may select to include as part of a follow-up message to their preceding message that included the selected smart reply 330 B.
  • each one of the smart follow-up contents 340 A, 340 B, and 340 C may comprise a selectable user interface element configured to, in response to a user selection of the smart follow-up content 340 via the corresponding selectable user interface element, transmit a follow-up message including the selected smart follow-up content 340 to the computing device of the first user.
  • each selectable user interface element corresponding to one of the smart replies 330 is configured to, in response to a user selection of the smart reply 330 via the corresponding selectable user interface element, insert the selected smart reply 330 into the content entry field 320 , where the second user may then provide an instruction to transmit a reply message including the selected smart reply 330 and any other user-entered content in the content entry field 320 to the first user.
  • FIG. 5 illustrates another result of one of the generated smart replies 330 being selected, in accordance with an example embodiment. In FIG. 5 , the second user has selected (e.g., clicked on, tapped) the corresponding selectable user interface element of smart reply 330 B in FIG. 3 .
  • the communication system 216 has inserted the selected smart reply 330 B into the content entry field 320 , but not yet transmitted a reply message including the selected smart reply 330 B to the first user.
  • the second user has an opportunity to enter additional content (e.g., text, images) into the content entry field 320 for inclusion along with the selected smart reply 330 B in the reply message or to edit (e.g., delete portions of) the selected smart reply 330 B in the content entry field 320 before transmitting the reply message.
  • additional content e.g., text, images
  • edit e.g., delete portions of
  • FIG. 6 is a block diagram illustrating the communication system 216 , in accordance with an example embodiment.
  • the communication system 216 comprises any combination of one or more of an interface module 610 , a reply module 620 , and one or more databases 630 .
  • the modules 610 and 620 and the database(s) 330 can reside on a computer system, or other machine, having a memory and at least one processor (not shown).
  • the communication system 216 comprises a remote server.
  • the modules 610 and 620 and the database(s) 330 are incorporated into the application server(s) 118 in FIG. 1
  • the database(s) 330 is incorporated into database(s) 126 in FIG. 1 and can include any combination of one or more of databases 218 , 220 , and 222 in FIG. 2 .
  • the communication system 216 comprises a client computing device.
  • any combination of one or more of the modules 610 and 620 and the database(s) 330 are incorporated into one or more of the client machines 110 and 112 in FIG. 1 or the mobile device 300 in FIG. 3 . It is contemplated that other configurations of the modules 610 and 620 , as well as the database(s) 630 , are also within the scope of the present disclosure.
  • one or more of the modules 610 and 620 is configured to provide a variety of user interface functionality, such as generating user interfaces, interactively presenting user interfaces to the user, receiving information from the user (e.g., interactions with user interfaces), and so on.
  • Presenting information to the user can include causing presentation of information to the user (e.g., communicating information to a device with instructions to present the information to the user).
  • Information may be presented using a variety of means including visually displaying information and using other device outputs (e.g., audio, tactile, and so forth).
  • information may be received via a variety of means including alphanumeric input or other device input (e.g., one or more touch screen, camera, tactile sensors, light sensors, infrared sensors, biometric sensors, microphone, gyroscope, accelerometer, other sensors, and so forth).
  • one or more of the modules 610 and 620 is configured to receive user input.
  • one or more of the modules 610 and 620 can present one or more GUI elements (e.g., drop-down menu, selectable buttons, text field) with which a user can submit input.
  • one or more of the modules 610 and 620 is configured to perform various communication functions to facilitate the functionality described herein, such as by communicating with the social networking system 210 via the network 104 using a wired or wireless connection. Any combination of one or more of the modules 610 and 620 may also provide various web services or functions, such as retrieving information from the third party servers 130 and the social networking system 210 . Information retrieved by the any of the modules 610 and 620 may include profile data corresponding to users and members of the social networking service of the social networking system 210 .
  • any combination of one or more of the modules 610 and 620 can provide various data functionality, such as exchanging information with the database(s) 630 .
  • any of the modules 610 and 620 can access profile data, social graph data, and member activity and behavior data from the databases 218 , 220 , and 222 in FIG. 2 , as well as exchange information with third party servers 130 , client machines 110 , 112 , and other sources of information.
  • the interface module 610 is configured to detect that a set of one or more messages having content has been transmitted from a first computing device of a first user to a second computing device of a second user. For example, in FIG. 3 , the interface module 610 has detected that message 310 A or message 310 B or both messages 310 A and 310 B have been transmitted to the first user.
  • the reply module 320 is configured to generate one or more smart replies in response to, or otherwise based on, the detection of the message(s) from the first user to the second user.
  • the reply module 620 uses a classification model to predict which replies best match the context in which a suggested reply is to be used (e.g., the conversation thus far, the interlocutors of the conversation, and other pertinent information such as the time of day).
  • a classification model to predict which replies best match the context in which a suggested reply is to be used (e.g., the conversation thus far, the interlocutors of the conversation, and other pertinent information such as the time of day).
  • different users employ different diction and phrasing to express the same idea.
  • the reply module 620 uses a personalization model separate from the core classification model. For each reply R initially selected by the core classification model with probability P c (R), the reply module 620 finds a possible different personalized reply, R′ that has the same or similar meaning. The reply module 620 selects this final R′ by computing a probability or score for all possible candidate replies, P(R′), combining the probability given by the core classification model for the original reply, P c (R), and the personalization model's conditional probability for the final reply R′ given the original reply, P p (R′
  • P ? ( R ′ ) 1 z ? P c ? ( R ) * P p ? ( R ′
  • the personalization model is configured to rely or to otherwise be based on two sources of information: a synonym hierarchy and observations of the replies selected by users.
  • the synonym hierarchy comprises a tree of concepts ranging from the most general root nodes (e.g., gratitude, yes/no answers, conversation openers, etc.) to the most specific leaves, which are the surface forms that are used as the actual smart replies.
  • the synonym hierarchy comprises a directed acyclic graph and thus, e.g., a reply with multiple meanings can have multiple parents.
  • FIG. 7 illustrates a hierarchical graph 700 of synonym replies, in accordance with an example embodiment.
  • the hierarchical graph 700 comprises a root node 710 , intermediate nodes 720 , and leaf nodes 730 .
  • the root node 710 represents a general meaning of gratitude. This general meaning of gratitude has different generalized forms of expression, such as “THANK YOU” and “APPRECIATED”, which are represented by intermediate nodes 720 .
  • leaf nodes 730 which represent the surface forms that are to be considered for use as smart replies, such as “THANKS!”, “THANKS”, “THANK YOU!”, “THANK YOU”, “APPRECIATE IT”, and “APPRECIATE IT!” in FIG. 7 .
  • the leaf nodes 730 are synonyms of each other.
  • the reply module 620 uses a history of the second user's interactions with smart replies to determine which leaf nodes to select for presentation as smart replies to the second user. In some example embodiments, every time smart replies 330 are presented to the second user, the interface module 610 records the instance of such presentation, as well as which, if any, of the smart replies 330 were selected by the second user for inclusion in a reply message to the first user.
  • the reply module 620 is configured to use the synonym hierarchy in conjunction with the history of the user's interactions with smart replies to determine P p (R′
  • n is the total height of the synonym hierarchy (i iterates over each level of the tree), and R i ′ is the ith parent of the personalized reply R′ in the synonym hierarchy.
  • R 0 ′ R
  • R 2 ′ is the synset of R′
  • L i is an additive smoothing constant for each level of the tree i
  • X is a log-linear weight that determines the relative importance of the ith layer in the synonym hierarchy.
  • the reply module 620 instead uses a backoff model: using the user's observed CTR (click-through rate) for R′ if the impression and click counts are sufficiently high, and otherwise using the aggregated counts for the parent of R′ in the synonym hierarchy (recursing to the next higher level if that aggregated impression count is still insufficient, and so on).
  • the reply module 620 uses the synonym hierarchy to smooth the possibly sparse counts for any given user, similar to ngram backoff and smoothing in neuro-linguistic programming (NLP), and to encourage exploration (e.g., trying smart replies with low impression counts—this is accomplished in the model described above by the additive smoothing constants L i that give a fixed number of hallucinated clicks and impressions to each reply, which makes low-impression-count replies unduly probable).
  • NLP neuro-linguistic programming
  • the reply module 620 is configured to determine a plurality of candidate replies based on the first content of the first set of one or more messages, and then select a plurality of smart replies from the plurality of candidate replies using a hierarchical graph data structure and at least one diversity rule.
  • the hierarchical graph data structure comprises a tree of concepts ranging from a root node to a plurality of leaf nodes with at least one intermediate node in between the root node and each one of the plurality of leaf nodes, and each one of the plurality of candidate replies being represented by a corresponding one of the plurality of leaf nodes in the hierarchical graph data structure, as discussed above with respect to FIG. 7 .
  • the reply module 620 may use the diversity rule(s) to ensure that a minimum amount of diversity is present in the smart replies 330 that are displayed within the GUI on the display screen 305 of the mobile device 300 .
  • each diversity rule is configured to restrict the number of displayed smart replies 330 that have a common parent node or that have some other common relationship with a particular node to being within a specified maximum threshold. For example, one diversity rule may require that no more than two displayed smart replies 330 may have the same parent node. Referring to FIG. 7 , this example diversity rule would prevent more than two leaf nodes 730 having the same intermediate node 720 as their parent node from being used as smart replies 330 . For example, if an intermediate node 720 had three leaf nodes 730 as its children, the example diversity rule would cause the reply module 620 to select no more than two of the three child leaf nodes 720 of intermediate node 730 for use as smart replies 330 .
  • the diversity rules may also place restrictions on other types of relationships between nodes as well, such as a more distant ancestors and descendants (e.g., grandparent-grandchild relationships).
  • the reply module 620 is configured to omit at least one of the plurality of candidate replies from selection to be included in the plurality of smart replies 330 based on the diversity rule(s).
  • the interface module 610 is configured to cause each one of the plurality of smart replies 330 to be displayed on the second computing device of the second user as a corresponding selectable user interface element, as discussed above with respect to FIG. 3 .
  • the reply module 620 is configured to receive a user selection of one of the plurality of smart replies 330 from the second computing device, and then transmit a second message including the selected one of the plurality of smart replies 330 to the first computing device in response to, or otherwise based on, the receiving of the user selection, as discussed above with respect to FIG. 4 .
  • the reply module 620 is configured to receive a user selection of one of the plurality of smart replies from the second computing device, and then insert the selected one of the plurality of smart replies into a content entry field displayed on the second computing device in response to, or otherwise based on, the receiving of the user selection, as discussed above with respect to FIG. 5 .
  • the communication system 216 is configured to store a record of the user selection of the one of the plurality of smart replies in a database, such as in the database(s) 630 , and then modify the second model based on the record of the user selection of the one of the plurality of smart replies using one or more machine learning operations.
  • the communication system 216 uses the record of the user selection of the one of the plurality of smart replies as training data in the one or more machine learning operations to modify the second model.
  • a cold-start problem may be encountered: until the user sees some smart replies and clicks on them, there is no information available about the user's preferences regarding smart replies.
  • the reply module 620 may rely on one or more groups to which the user belongs. In some example embodiments, the reply module 620 accesses the profile information of the user and the profile information of other users to determine a group of other users who have profile information that has a level of similarity that is determined to satisfy a predetermined similarity threshold.
  • the reply module 620 may analyze the profile information of the user and the other users to determine groups of users who have the same or similar location, have the same or similar age, have the same gender, have the same or similar culture, have the same or similar industry, have profile information embeddings that are within some distance K from the user's profile information embedding, etc.
  • a user may belong to multiple groups.
  • the reply module 620 may employ a model P p (R′
  • the model based on the observations for the user U is P p u (R′
  • the model for each group G is P p g (R′
  • the new model, smoothed via group membership is:
  • the reply module 620 smooths the user selection data over groups directly rather than smoothing the probabilities from per-group models. For example, the reply module 620 may use a weighted sum or backoff on the selection/impression counts (e.g., using a weighted average of the user's own counts and the groups to which they belong).
  • the reply module 620 may determine whether or not to use the above-discussed group-based model based on a determination of whether or not there is sufficient user selection data for the second user.
  • the reply module 620 is configured to, in generating the plurality of smart replies, determine that a number of times the corresponding synonym reply was presented to the second user as a selectable option for replying to messages is below a predetermined threshold (e.g., the predetermined threshold can be one impression instance), and then, based on the determination that the number of times the corresponding synonym reply was presented to the second user is below the predetermined threshold, identify a group of users to which the second user belongs based on a determination that a level of similarity between profile information of the second user and profile information of the group of users satisfies a predetermined similarity threshold.
  • the reply module 620 then generates the plurality of smart replies using the second model based on the plurality of synonym replies and a number of times the group of users has selected the corresponding synonym reply for replying to messages.
  • the reply module 620 is configured to, in generating the plurality of smart replies, limit a number of the smart replies in the plurality of smart replies to no more than a particular number based on a screen size of the second computing device.
  • the reply module 620 may limit the number of smart replies to be displayed on smartphones and smartwatches to no more than three smart replies, while limiting the number of smart replies to be displayed on laptop computers and tablet computers to no more than five smart replies. It is contemplated that other numbers and configurations may be used in limiting the number of smart replies to be displayed.
  • the reply module 620 is configured to select a plurality of smart follow-up content from a plurality of candidate follow-up content in response to the transmitting of the second message including the selected one of the plurality of smart replies to the first computing device.
  • the selecting of the plurality of smart follow-up content is based on at least one of the selected one of the plurality of smart replies and the first content of the first set of one or more messages.
  • the reply module 620 is configured to generate the plurality of smart follow-up content by using the same model or a similar model as the model used to generate the smart replies. However, the reply module 620 may feed the selected smart reply into the model in order to generate the plurality of smart follow-up content.
  • the reply module 620 does not generate any smart follow-up content in response to input being entered by the second user via the content entry field 320 , but rather conditions the generation and display of the smart follow-up content on the second user selecting a smart reply or selecting a smart follow-up.
  • the reply module 620 may use only a selected smart reply or a selected smart follow-up content as the trigger and the basis for generating and displaying a smart-follow-up content or an additional smart follow-up content.
  • the reply module 620 selects the plurality of smart follow-up content by determining the plurality of candidate follow-up content based on at least one of the selected one of the plurality of smart replies and the first content of the first set of one or more messages, and then selecting the plurality of smart follow-up content from the plurality of candidate follow-up content using the hierarchical graph data structure and the diversity rule(s), with each one of the plurality of smart follow-up content being represented by a corresponding one of the plurality of leaf nodes in the hierarchical graph data structure.
  • the reply module 620 is configured to omit at least one of the plurality of candidate follow-up content from selection to be included in the plurality of smart follow-up content based on the diversity rule(s), where the diversity rule(s) limit a number of the plurality of smart follow-up content that have a common parent node or some other common relationship with a particular node.
  • the interface module 610 is configured to cause each one of the plurality of smart follow-up content to be displayed on the second computing device of the second user as a corresponding selectable user interface element, similar to the display of the selectable user interface elements corresponding to the smart replies. In some example embodiments, the interface module 610 is also configured to receive a user selection of one of the plurality of smart follow-up content from the second computing device, and then transmit a third message including the selected one of the plurality of smart follow-up content to the first computing device in response to receiving the other user selection.
  • the interface module 610 is configured to first display the corresponding category concepts of a plurality of intermediate nodes 720 as selectable user interface elements.
  • FIG. 8 illustrates generated smart reply categories 830 being displayed as or along with corresponding selectable options for replying to messages within a GUI on the display screen 305 of the mobile device 300 , in accordance with an example embodiment.
  • two category concepts 830 A and 830 B of smart replies are displayed along with corresponding selectable user interface elements 835 A and 835 B.
  • the corresponding selectable user interface elements 835 A and 835 B are each configured to, in response to being selected, cause the smart replies 930 corresponding to the child nodes of the intermediate node corresponding to the selected user interface element 835 to be displayed as selectable smart replies.
  • FIG. 9 illustrates a result of one of the selectable user interface elements 835 for the smart reply categories 830 being selected, in accordance with an example embodiment.
  • the selectable user interface element 835 A corresponding to the concept of “THANK YOU” has been selected in FIG.
  • FIG. 10 is a flowchart illustrating a method 1000 of generating smart replies, in accordance with an example embodiment.
  • the method 1000 can be performed by processing logic that can comprise hardware (e.g., circuitry, dedicated logic, programmable logic, microcode, etc.), software (e.g., instructions run on a processing device), or a combination thereof.
  • the method 1000 is performed by the communication system 216 of FIGS. 2-3 , as described above.
  • the communication system 216 detects that a first set of one or more messages having first content has been transmitted from a first computing device of a first user to a second computing device of a second user.
  • the first content of the first set of one or more messages comprises text.
  • image-based content e.g., emojis, GIFs.
  • the communication system 216 determines a plurality of candidate replies based on the first content of the first set of one or more messages.
  • the communication system 216 searches a database of candidate replies using the first content in order to determine the plurality of candidate replies.
  • the communication system 216 may analyze the first content of the first set of one or more messages using a model to determine that it is a text message expressing “congratulations,” and then search the database of candidate replies for candidate replies that have been tagged as being replies to messages expressing “congratulations.”
  • the communication system 216 may employ other techniques and operations in determining the plurality of candidate replies.
  • the communication system 216 selects a plurality of smart replies from the plurality of candidate replies using a hierarchical graph data structure and at least one diversity rule.
  • the hierarchical graph data structure comprises a tree of concepts ranging from a root node to a plurality of leaf nodes with at least one intermediate node in between the root node and each one of the plurality of leaf nodes, with each one of the plurality of smart replies being represented by a corresponding one of the plurality of leaf nodes in the hierarchical graph data structure.
  • the selecting the plurality of smart replies comprises omitting at least one of the plurality of candidate replies from selection to be included in the plurality of smart replies based on the diversity rule(s), where the diversity rule(s) limit a number of the plurality of smart replies that have a common parent node or some other common relationship with a particular node.
  • each one of the plurality of smart replies comprises text.
  • image-based content e.g., emojis, GIFs.
  • the communication system 216 causes each one of the selected plurality of smart replies to be displayed on the second computing device of the second user as a corresponding selectable user interface element.
  • the communication system 216 may transmit the selected plurality of smart replies to the second computing device along with instructions to display the selected plurality of smart replies, thereby causing the second computing device to display the selected plurality of smart replies as corresponding selectable user interface elements.
  • the communication system 216 receives a user selection of one of the plurality of smart replies from the second computing device. For example, the second user may click or tap on one of the smart replies, and the communication system 216 may receive an indication of the click or tap as the user selection.
  • the communication system 216 transmits a second message including the selected one of the plurality of smart replies to the first computing device in response to, or otherwise based on, the receiving of the user selection.
  • the receiving of the user selection may trigger the automatic creation of the second message including the selected smart reply and the automatic transmission of the second message to the first computing device.
  • the communication system 216 in response to or otherwise based on the receiving of the user selection at operation 1050 , stores a record of the user selection of the one of the plurality of smart replies in a database.
  • the communication system 216 modifies one or more models used to generate the smart replies based on the record of the user selection of the one of the plurality of smart replies using one or more machine learning operations.
  • the record of the user selection of the one of the plurality of smart replies is used as training data in the one or more machine learning operations.
  • FIG. 11 is a flowchart illustrating a method of generating smart follow-up contents, in accordance with an example embodiment.
  • the method 1100 can be performed by processing logic that can comprise hardware (e.g., circuitry, dedicated logic, programmable logic, microcode, etc.), software (e.g., instructions run on a processing device), or a combination thereof.
  • the method 1100 is performed by the communication system 216 of FIGS. 2-3 , as described above.
  • operation 1110 performed in response to or otherwise based on operation 1060 of FIG. 10 .
  • the communication system 216 detects that a message that includes a selected smart reply has been transmitted from the second computing device of the second user to the first computing device of the first user.
  • the communication system 216 selects a plurality of smart follow-up content from a plurality of candidate follow-up content in response to the transmitting of the second message including the selected one of the plurality of smart replies to the first computing device.
  • the selecting of the plurality of smart follow-up content is based on at least one of the selected one of the plurality of smart replies and the first content of the first set of one or more messages.
  • the selecting of the plurality of smart follow-up content comprises determining the plurality of candidate follow-up content based on at least one of the selected one of the plurality of smart replies and the first content of the first set of one or more messages, and selecting the plurality of smart follow-up content from the plurality of candidate follow-up content using the hierarchical graph data structure and at least one diversity rule, where each one of the plurality of smart follow-up content is represented by a corresponding one of the plurality of leaf nodes in the hierarchical graph data structure.
  • the selecting of the plurality of smart follow-up content comprises omitting at least one of the plurality of candidate follow-up content from selection to be included in the plurality of smart follow-up content based on the diversity rule(s), where the diversity rule(s) limit a number of the plurality of smart follow-up content that have a common parent node or have some other common relationship with a particular node.
  • the communication system 216 causes each one of the plurality of smart follow-up content to be displayed on the second computing device of the second user as a corresponding selectable user interface element.
  • the communication system 216 may transmit the plurality of smart follow-up content to the second computing device along with instructions to display the plurality of smart follow-up content, thereby causing the second computing device to display the plurality of smart follow-up content as corresponding selectable user interface elements.
  • the communication system 216 receives a user selection of one of the plurality of smart follow-up content from the second computing device. For example, the second user may click or tap on one of the smart follow-up content, and the communication system 216 may receive an indication of the click or tap as the user selection.
  • the communication system 216 transmits another message including the selected one of the plurality of smart follow-up content to the first computing device in response to, or otherwise based on, the receiving of the user selection.
  • the receiving of the user selection may trigger the automatic creation of the other message including the selected smart follow-up content and the automatic transmission of the other message to the first computing device.
  • the communication system 216 in response to or otherwise based on the receiving of the user selection at operation 1140 , stores a record of the user selection of the one of the plurality of smart replies in a database.
  • the communication system 216 modifies one or more models used to generate the plurality of smart follow-up content based on the record of the user selection of the one of the plurality of smart follow-up content using one or more machine learning operations.
  • the record of the user selection of the one of the plurality of smart follow-up content is used as training data in the one or more machine learning operations.
  • FIG. 12 is a block diagram illustrating a mobile device 1200 , according to an example embodiment.
  • the mobile device 1200 can include a processor 1202 .
  • the processor 1202 can be any of a variety of different types of commercially available processors suitable for mobile devices 1200 (for example, an XScale architecture microprocessor, a Microprocessor without Interlocked Pipeline Stages (MIPS) architecture processor, or another type of processor).
  • a memory 1204 such as a random access memory (RAM), a Flash memory, or other type of memory, is typically accessible to the processor 1202 .
  • RAM random access memory
  • Flash memory or other type of memory
  • the memory 1204 can be adapted to store an operating system (OS) 1206 , as well as application programs 1208 , such as a mobile location-enabled application that can provide location-based services (LBSs) to a user.
  • OS operating system
  • application programs 1208 such as a mobile location-enabled application that can provide location-based services (LBSs) to a user.
  • the processor 1202 can be coupled, either directly or via appropriate intermediary hardware, to a display 1210 and to one or more input/output (I/O) devices 1212 , such as a keypad, a touch panel sensor, a microphone, and the like.
  • the processor 1202 can be coupled to a transceiver 1214 that interfaces with an antenna 1216 .
  • the transceiver 1214 can be configured to both transmit and receive cellular network signals, wireless data signals, or other types of signals via the antenna 1216 , depending on the nature of the mobile device 1200 . Further, in some configurations, a GPS receiver 1218 can also make use of the antenna 1216 to receive GPS signals.
  • Modules may constitute either software modules (e.g., code embodied (1) on a non-transitory machine-readable medium or (2) in a transmission signal) or hardware-implemented modules.
  • a hardware-implemented module is tangible unit capable of performing certain operations and may be configured or arranged in a certain manner.
  • one or more computer systems e.g., a standalone, client or server computer system
  • one or more processors may be configured by software (e.g., an application or application portion) as a hardware-implemented module that operates to perform certain operations as described herein.
  • a hardware-implemented module may be implemented mechanically or electronically.
  • a hardware-implemented module may comprise dedicated circuitry or logic that is permanently configured (e.g., as a special-purpose processor, such as a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)) to perform certain operations.
  • a hardware-implemented module may also comprise programmable logic or circuitry (e.g., as encompassed within a general-purpose processor or other programmable processor) that is temporarily configured by software to perform certain operations. It will be appreciated that the decision to implement a hardware-implemented module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.
  • the term “hardware-implemented module” should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired) or temporarily or transitorily configured (e.g., programmed) to operate in a certain manner and/or to perform certain operations described herein.
  • hardware-implemented modules are temporarily configured (e.g., programmed)
  • each of the hardware-implemented modules need not be configured or instantiated at any one instance in time.
  • the hardware-implemented modules comprise a general-purpose processor configured using software
  • the general-purpose processor may be configured as respective different hardware-implemented modules at different times.
  • Software may accordingly configure a processor, for example, to constitute a particular hardware-implemented module at one instance of time and to constitute a different hardware-implemented module at a different instance of time.
  • Hardware-implemented modules can provide information to, and receive information from, other hardware-implemented modules. Accordingly, the described hardware-implemented modules may be regarded as being communicatively coupled. Where multiple of such hardware-implemented modules exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) that connect the hardware-implemented modules. In embodiments in which multiple hardware-implemented modules are configured or instantiated at different times, communications between such hardware-implemented modules may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware-implemented modules have access. For example, one hardware-implemented module may perform an operation, and store the output of that operation in a memory device to which it is communicatively coupled.
  • a further hardware-implemented module may then, at a later time, access the memory device to retrieve and process the stored output.
  • Hardware-implemented modules may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information).
  • processors may be temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions.
  • the modules referred to herein may, in some example embodiments, comprise processor-implemented modules.
  • the methods described herein may be at least partially processor-implemented. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented modules. The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processor or processors may be located in a single location (e.g., within a home environment, an office environment or as a server farm), while in other embodiments the processors may be distributed across a number of locations.
  • the one or more processors may also operate to support performance of the relevant operations in a “cloud computing” environment or as a “software as a service” (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., Application Program Interfaces (APIs).)
  • SaaS software as a service
  • Example embodiments may be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them.
  • Example embodiments may be implemented using a computer program product, e.g., a computer program tangibly embodied in an information carrier, e.g., in a machine-readable medium for execution by, or to control the operation of, data processing apparatus, e.g., a programmable processor, a computer, or multiple computers.
  • a computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, subroutine, or other unit suitable for use in a computing environment.
  • a computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network.
  • operations may be performed by one or more programmable processors executing a computer program to perform functions by operating on input data and generating output.
  • Method operations can also be performed by, and apparatus of example embodiments may be implemented as, special purpose logic circuitry, e.g., a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC).
  • FPGA field programmable gate array
  • ASIC application-specific integrated circuit
  • the computing system can include clients and servers.
  • a client and server are generally remote from each other and typically interact through a communication network.
  • the relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.
  • both hardware and software architectures merit consideration.
  • the choice of whether to implement certain functionality in permanently configured hardware e.g., an ASIC
  • temporarily configured hardware e.g., a combination of software and a programmable processor
  • a combination of permanently and temporarily configured hardware may be a design choice.
  • hardware e.g., machine
  • software architectures that may be deployed, in various example embodiments.
  • FIG. 13 is a block diagram of an example computer system 1300 on which methodologies described herein may be executed, in accordance with an example embodiment.
  • the machine operates as a standalone device or may be connected (e.g., networked) to other machines.
  • the machine may operate in the capacity of a server or a client machine in server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment.
  • the machine may be a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a network router, switch or bridge, or any machine capable of executing instructions (sequential or otherwise) that specify actions to be taken by that machine.
  • PC personal computer
  • PDA Personal Digital Assistant
  • STB set-top box
  • WPA Personal Digital Assistant
  • a cellular telephone a web appliance
  • network router switch or bridge
  • machine any machine capable of executing instructions (sequential or otherwise) that specify actions to be taken by that machine.
  • machine shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
  • the example computer system 1300 includes a processor 1302 (e.g., a central processing unit (CPU), a graphics processing unit (GPU) or both), a main memory 1304 and a static memory 1306 , which communicate with each other via a bus 1308 .
  • the computer system 1300 may further include a graphics display unit 1310 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)).
  • a graphics display unit 1310 e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)
  • the computer system 1300 also includes an alphanumeric input device 1312 (e.g., a keyboard or a touch-sensitive display screen), a user interface (UI) navigation device 1314 (e.g., a mouse), a storage unit 1316 , a signal generation device 1318 (e.g., a speaker) and a network interface device 1320 .
  • an alphanumeric input device 1312 e.g., a keyboard or a touch-sensitive display screen
  • UI user interface
  • storage unit 1316 e.g., a storage unit 1316
  • signal generation device 1318 e.g., a speaker
  • the storage unit 1316 includes a machine-readable medium 1322 on which is stored one or more sets of instructions and data structures (e.g., software) 1324 embodying or utilized by any one or more of the methodologies or functions described herein.
  • the instructions 1324 may also reside, completely or at least partially, within the main memory 1304 and/or within the processor 1302 during execution thereof by the computer system 1300 , the main memory 1304 and the processor 1302 also constituting machine-readable media.
  • machine-readable medium 1322 is shown in an example embodiment to be a single medium, the term “machine-readable medium” may include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more instructions 1324 or data structures.
  • the term “machine-readable medium” shall also be taken to include any tangible medium that is capable of storing, encoding or carrying instructions (e.g., instructions 1324 ) for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure, or that is capable of storing, encoding or carrying data structures utilized by or associated with such instructions.
  • machine-readable medium shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media.
  • machine-readable media include non-volatile memory, including by way of example semiconductor memory devices, e.g., Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks.
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • flash memory devices e.g., electrically Erasable Programmable Read-Only Memory (EEPROM), and flash memory devices
  • magnetic disks such as internal hard disks and removable disks
  • magneto-optical disks and CD-ROM and DVD-ROM disks.
  • the instructions 1324 may further be transmitted or received over a communications network 1326 using a transmission medium.
  • the instructions 1324 may be transmitted using the network interface device 1320 and any one of a number of well-known transfer protocols (e.g., HTTP).
  • Examples of communication networks include a local area network (“LAN”), a wide area network (“WAN”), the Internet, mobile telephone networks, Plain Old Telephone Service (POTS) networks, and wireless data networks (e.g., WiFi and WiMax networks).
  • POTS Plain Old Telephone Service
  • the term “transmission medium” shall be taken to include any intangible medium that is capable of storing, encoding or carrying instructions for execution by the machine, and includes digital or analog communications signals or other intangible media to facilitate communication of such software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Computational Linguistics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Artificial Intelligence (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Data Mining & Analysis (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Primary Health Care (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • Information Transfer Between Computers (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

Techniques for generating diverse smart replies using a synonym hierarchy are disclosed herein. A computer system may detect that a first set of one or more messages having first content has been transmitted from a first computing device of a first user to a second computing device of a second user, determine a plurality of candidate replies based on the first content of the first set of one or more messages, and then select a plurality of smart replies from the plurality of candidate replies using a hierarchical graph data structure and at least one diversity rule. The selecting of the plurality of smart replies comprises omitting at least one of the plurality of candidate replies from selection based on the at least one diversity rule, which limits a number of the plurality of smart replies that have a common parent node.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation of prior application Ser. No. 16/020,148, filed on Jun. 27, 2018, which is incorporated by reference herein in its entirety.
TECHNICAL FIELD
The present application relates generally to systems, methods, and computer program products for reducing the consumption of electronic resources in generating diverse smart replies for a user using synonym hierarchy graphs.
BACKGROUND
Generating suggested replies to messages can drain electronic resources by placing a heavy load of computational expense on the computer system that is generating the suggested replies. In attempting to provide users with the most relevant and useful suggested replies, the computer system may have to evaluate a vast number of parameters for a model and may require a large amount of training data for each and every user. Additionally, available space on a display screen can be limited, particularly with display screens of mobile devices. Computer systems may waste this importance space on the display screen by displaying an excessive number of redundant smart replies. Other technical problems may arise as well.
BRIEF DESCRIPTION OF THE DRAWINGS
Some embodiments of the present disclosure are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like reference numbers indicate similar elements.
FIG. 1 is a block diagram illustrating a client-server system, in accordance with an example embodiment.
FIG. 2 is a block diagram showing the functional components of a social networking service within a networked system, in accordance with an example embodiment.
FIG. 3 illustrates generated smart replies being displayed as selectable options for replying to messages within a graphical user interface (GUI) on a display screen of a mobile device, in accordance with an example embodiment.
FIG. 4 illustrates a result of one of the generated smart replies being selected, in accordance with an example embodiment.
FIG. 5 illustrates another result of one of the generated smart replies being selected, in accordance with an example embodiment.
FIG. 6 is a block diagram illustrating a communication system, in accordance with an example embodiment.
FIG. 7 illustrates a hierarchical graph of synonym replies, in accordance with an example embodiment.
FIG. 8 illustrates generated smart reply categories being displayed as selectable options for replying to messages within a GUI on a display screen of a mobile device, in accordance with an example embodiment.
FIG. 9 illustrates a result of one of the generated smart reply categories being selected, in accordance with an example embodiment.
FIG. 10 is a flowchart illustrating a method of generating smart replies, in accordance with an example embodiment.
FIG. 11 is a flowchart illustrating a method of generating smart follow-up contents, in accordance with an example embodiment.
FIG. 12 is a block diagram illustrating a mobile device, in accordance with some example embodiments.
FIG. 13 is a block diagram of an example computer system on which methodologies described herein may be executed, in accordance with an example embodiment.
DETAILED DESCRIPTION
Example methods and systems of generating diverse smart replies for a user using synonym hierarchy graphs are disclosed. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of example embodiments. It will be evident, however, to one skilled in the art that the present embodiments may be practiced without these specific details.
Some or all of the above problems may be addressed by one or more example embodiments disclosed herein. Some technical effects of the system and method of the present disclosure are to reducing the consumption of electronic resources in generating diverse smart replies for a user. Additionally, other technical effects will be apparent from this disclosure as well.
In some example embodiments, operations are performed by a computer system (or other machine) having a memory and at least one hardware processor, with the operations comprising: detecting that a first set of one or more messages having first content has been transmitted from a first computing device of a first user to a second computing device of a second user; determining a plurality of candidate replies based on the first content of the first set of one or more messages; selecting a plurality of smart replies from the plurality of candidate replies using a hierarchical graph data structure and at least one diversity rule, the hierarchical graph data structure comprising a tree of concepts ranging from a root node to a plurality of leaf nodes with at least one intermediate node in between the root node and each one of the plurality of leaf nodes, each one of the plurality of smart replies being represented by a corresponding one of the plurality of leaf nodes in the hierarchical graph data structure, the selecting the plurality of smart replies comprising omitting at least one of the plurality of candidate replies from selection to be included in the plurality of smart replies based on the at least one diversity rule, the at least one diversity rule limiting a number of the plurality of smart replies that have a common parent node; and causing each one of the selected plurality of smart replies to be displayed on the second computing device of the second user as a corresponding selectable user interface element.
In some example embodiments, the operations further comprise: receiving a user selection of one of the plurality of smart replies from the second computing device; and transmitting a second message including the selected one of the plurality of smart replies to the first computing device in response to the receiving of the user selection.
In some example embodiments, the operations further comprise: selecting a plurality of smart follow-up content from a plurality of candidate follow-up content in response to the transmitting of the second message including the selected one of the plurality of smart replies to the first computing device, the selecting of the plurality of smart follow-up content being based on at least one of the selected one of the plurality of smart replies and the first content of the first set of one or more messages; and causing each one of the selected plurality of smart follow-up content to be displayed on the second computing device of the second user as a corresponding selectable user interface element.
In some example embodiments, the selecting of the plurality of smart follow-up content comprises: determining the plurality of candidate follow-up content based on at least one of the selected one of the plurality of smart replies and the first content of the first set of one or more messages; and selecting the plurality of smart follow-up content from the plurality of candidate follow-up content using the hierarchical graph data structure and the at least one diversity rule, each one of the plurality of smart follow-up content being represented by a corresponding one of the plurality of leaf nodes in the hierarchical graph data structure, the selecting of the plurality of smart follow-up content comprising omitting at least one of the plurality of candidate follow-up content from selection to be included in the plurality of smart follow-up content based on the at least one diversity rule, the at least one diversity rule limiting a number of the plurality of smart follow-up content that have a common parent node.
In some example embodiments, the operations further comprise: receiving another user selection of one of the plurality of smart follow-up content from the second computing device; and transmitting a third message including the selected one of the plurality of smart follow-up content to the first computing device in response to the receiving of the other user selection.
In some example embodiments, the first content of the first set of one or more messages comprises text. In some example embodiments, each one of the plurality of smart replies comprises text.
In some example embodiments, the computer system comprises a remote server. In some example embodiments, the computer system comprises the second computing device.
The methods or embodiments disclosed herein may be implemented as a computer system having one or more modules (e.g., hardware modules or software modules). Such modules may be executed by one or more processors of the computer system. The methods or embodiments disclosed herein may be embodied as instructions stored on a machine-readable medium that, when executed by one or more processors, cause the one or more processors to perform the instructions.
FIG. 1 is a block diagram illustrating a client-server system 100, in accordance with an example embodiment. A networked system 102 provides server-side functionality via a network 104 (e.g., the Internet or Wide Area Network (WAN)) to one or more clients. FIG. 1 illustrates, for example, a web client 106 (e.g., a browser) and a programmatic client 108 executing on respective client machines 110 and 112.
An Application Program Interface (API) server 114 and a web server 116 are coupled to, and provide programmatic and web interfaces respectively to, one or more application servers 118. The application servers 118 host one or more applications 120. The application servers 118 are, in turn, shown to be coupled to one or more database servers 124 that facilitate access to one or more databases 126. While the applications 120 are shown in FIG. 1 to form part of the networked system 102, it will be appreciated that, in alternative embodiments, the applications 120 may form part of a service that is separate and distinct from the networked system 102.
Further, while the system 100 shown in FIG. 1 employs a client-server architecture, the present disclosure is of course not limited to such an architecture, and could equally well find application in a distributed, or peer-to-peer, architecture system, for example. The various applications 120 could also be implemented as standalone software programs, which do not necessarily have networking capabilities.
The web client 106 accesses the various applications 120 via the web interface supported by the web server 116. Similarly, the programmatic client 108 accesses the various services and functions provided by the applications 120 via the programmatic interface provided by the API server 114.
FIG. 1 also illustrates a third party application 128, executing on a third party server machine 130, as having programmatic access to the networked system 102 via the programmatic interface provided by the API server 114. For example, the third party application 128 may, utilizing information retrieved from the networked system 102, support one or more features or functions on a website hosted by the third party. The third party website may, for example, provide one or more functions that are supported by the relevant applications of the networked system 102.
In some embodiments, any website referred to herein may comprise online content that may be rendered on a variety of devices, including but not limited to, a desktop personal computer, a laptop, and a mobile device (e.g., a tablet computer, smartphone, etc.). In this respect, any of these devices may be employed by a user to use the features of the present disclosure. In some embodiments, a user can use a mobile app on a mobile device (any of machines 110, 112, and 130 may be a mobile device) to access and browse online content, such as any of the online content disclosed herein. A mobile server (e.g., API server 114) may communicate with the mobile app and the application server(s) 118 in order to make the features of the present disclosure available on the mobile device.
In some embodiments, the networked system 102 may comprise functional components of a social networking service. FIG. 2 is a block diagram showing the functional components of a social networking system 210, including a data processing module referred to herein as a communication system 216, for use in social networking system 210, consistent with some embodiments of the present disclosure. In some embodiments, the communication system 216 resides on application server(s) 118 in FIG. 1. However, it is contemplated that other configurations are also within the scope of the present disclosure.
As shown in FIG. 2, a front end may comprise a user interface module (e.g., a web server) 212, which receives requests from various client-computing devices, and communicates appropriate responses to the requesting client devices. For example, the user interface module(s) 212 may receive requests in the form of Hypertext Transfer Protocol (HTTP) requests, or other web-based, application programming interface (API) requests. In addition, a member interaction detection module 213 may be provided to detect various interactions that members have with different applications, services and content presented. As shown in FIG. 2, upon detecting a particular interaction, the member interaction detection module 213 logs the interaction, including the type of interaction and any meta-data relating to the interaction, in a member activity and behavior database 222.
An application logic layer may include one or more various application server modules 214, which, in conjunction with the user interface module(s) 212, generate various user interfaces (e.g., web pages) with data retrieved from various data sources in the data layer. With some embodiments, individual application server modules 214 are used to implement the functionality associated with various applications and/or services provided by the social networking service. In some example embodiments, the application logic layer includes the communication system 216.
As shown in FIG. 2, a data layer may include several databases, such as a database 218 for storing profile data, including both member profile data and profile data for various organizations (e.g., companies, schools, etc.). Consistent with some embodiments, when a person initially registers to become a member of the social networking service, the person will be prompted to provide some personal information, such as his or her name, age (e.g., birthdate), gender, interests, contact information, home town, address, the names of the member's spouse and/or family members, educational background (e.g., schools, majors, matriculation and/or graduation dates, etc.), employment history, skills, professional organizations, and so on. This information is stored, for example, in the database 218. Similarly, when a representative of an organization initially registers the organization with the social networking service, the representative may be prompted to provide certain information about the organization. This information may be stored, for example, in the database 218, or another database (not shown). In some example embodiments, the profile data may be processed (e.g., in the background or offline) to generate various derived profile data. For example, if a member has provided information about various job titles the member has held with the same company or different companies, and for how long, this information can be used to infer or derive a member profile attribute indicating the member's overall seniority level, or seniority level within a particular company. In some example embodiments, importing or otherwise accessing data from one or more externally hosted data sources may enhance profile data for both members and organizations. For instance, with companies in particular, financial data may be imported from one or more external data sources, and made part of a company's profile. Additionally, one or more profile images (e.g., photos of the member) may be stored in the database 218.
Once registered, a member may invite other members, or be invited by other members, to connect via the social networking service. A “connection” may require or indicate a bi-lateral agreement by the members, such that both members acknowledge the establishment of the connection. Similarly, with some embodiments, a member may elect to “follow” another member. In contrast to establishing a connection, the concept of “following” another member typically is a unilateral operation, and at least with some embodiments, does not require acknowledgement or approval by the member that is being followed. When one member follows another, the member who is following may receive status updates (e.g., in an activity or content stream) or other messages published by the member being followed, or relating to various activities undertaken by the member being followed. Similarly, when a member follows an organization, the member becomes eligible to receive messages or status updates published on behalf of the organization. For instance, messages or status updates published on behalf of an organization that a member is following will appear in the member's personalized data feed, commonly referred to as an activity stream or content stream. In any case, the various associations and relationships that the members establish with other members, or with other entities and objects, are stored and maintained within a social graph, shown in FIG. 2 with database 220.
As members interact with the various applications, services, and content made available via the social networking system 210, the members' interactions and behavior (e.g., content viewed, links or buttons selected, messages responded to, etc.) may be tracked and information concerning the member's activities and behavior may be logged or stored, for example, as indicated in FIG. 2 by the database 222. This logged activity information may then be used by the communication system 216. The members' interactions and behavior may also be tracked, stored, and used by a pre-fetch system 400 residing on a client device, such as within a browser of the client device, as will be discussed in further detail below.
In some embodiments, databases 218, 220, and 222 may be incorporated into database(s) 126 in FIG. 1. However, other configurations are also within the scope of the present disclosure.
Although not shown, in some embodiments, the social networking system 210 provides an application programming interface (API) module via which applications and services can access various data and services provided or maintained by the social networking service. For example, using an API, an application may be able to request and/or receive one or more navigation recommendations. Such applications may be browser-based applications, or may be operating system-specific. In particular, some applications may reside and execute (at least partially) on one or more mobile devices (e.g., phone, or tablet computing devices) with a mobile operating system. Furthermore, while in many cases the applications or services that leverage the API may be applications and services that are developed and maintained by the entity operating the social networking service, other than data privacy concerns, nothing prevents the API from being provided to the public or to certain third-parties under special arrangements, thereby making the navigation recommendations available to third party applications and services.
Although the communication system 216 is referred to herein as being used in the context of a social networking service, it is contemplated that it may also be employed in the context of any website or online services. Additionally, features of the present disclosure can be used or presented in the context of a web page or any other user interface view, including, but not limited to, a user interface on a mobile device or on desktop software.
In some example embodiments, the communication system 216 is configured to generate a diverse set of smart replies for a user using a synonym hierarchy graph and at least one diversity rule that limits the number of smart replies that have a common parent node or that have some other common relationship with a particular node. A smart reply is a suggested reply that is automatically generated by the communication system 216 and presented to a user in response to, or otherwise based on, a message sent to the user from another user (e.g., a text message transmitted from a first device of a first user to a second device of a second user).
FIG. 3 illustrates generated smart replies 330 being displayed as selectable options for replying to messages 310 within a graphical user interface (GUI) on a display screen 305 of a mobile device 300, in accordance with an example embodiment. In FIG. 3, a first user, represented on the display screen 305 by icon 312 (e.g., a profile image of the first user), has sent a message 310 to a second user, represented in the display screen 305 by icon 332 (e.g., a profile image of the second user). Although the example conversations provided herein involve a first user and a second user, in some example embodiments, the conversations involve more than two users, such as with group conversations where three or more users are included in the same conversation thread. The GUI provides a content entry field 320 configured to receive user-entered content (e.g., text, image) to be included in a reply message to the first user. The GUI also provides a selectable user interface element 325 configured to trigger the transmission of the input received via the content entry field 320 to the first user.
In FIG. 3, the communication system 216 has generated smart replies 330A, 330B, and 330C based on the content of one or more of the messages 310. In some example embodiments, the smart replies 330A, 330B, and 330C are each displayed as a selectable user interface element that the second user may select to include as part of a reply message to the first user. For example, each one of the smart replies 330A, 330B, and 330C may comprise a selectable user interface element configured to, in response to a user selection of the smart reply 330 via the corresponding selectable user interface element, transmit a reply message including the selected smart reply 330 to the computing device of the first user. FIG. 4 illustrates a result of one of the generated smart replies 330 being selected by the second user, in accordance with an example embodiment. In FIG. 4, the second user has selected (e.g., clicked on, tapped) the corresponding selectable user interface element of smart reply 330B in FIG. 3. In response to this user selection of the corresponding selectable user interface element of smart reply 330B, the communication system 216 has transmitted a reply message including the selected smart reply 330B to the computing device of the first user, as shown by the smart reply 330B being displayed as part of a conversation between the first user and the second user within the GUI on the display screen 305.
In some example embodiments, the communication system 216 generates and displays a plurality of smart follow-up content 340 in response to the selection of one of the smart replies 330 or in response to the transmission of the second message including the selected smart reply 330 to the first computing device. The plurality of smart follow-up content 340 may be determined based on at least one of the selected smart reply 330 and the content of the message 310 from the first computing device.
In FIG. 4, the communication system 216 has generated smart follow-up contents 340A, 340B, and 340C based on any combination of one or more of the selected smart reply 330B and the content of the message 310 from the first computing device. In some example embodiments, the smart follow-up contents 340A, 340B, and 340C are each displayed as a corresponding selectable user interface element that the second user may select to include as part of a follow-up message to their preceding message that included the selected smart reply 330B. For example, each one of the smart follow-up contents 340A, 340B, and 340C may comprise a selectable user interface element configured to, in response to a user selection of the smart follow-up content 340 via the corresponding selectable user interface element, transmit a follow-up message including the selected smart follow-up content 340 to the computing device of the first user.
In some example embodiments, each selectable user interface element corresponding to one of the smart replies 330 is configured to, in response to a user selection of the smart reply 330 via the corresponding selectable user interface element, insert the selected smart reply 330 into the content entry field 320, where the second user may then provide an instruction to transmit a reply message including the selected smart reply 330 and any other user-entered content in the content entry field 320 to the first user. FIG. 5 illustrates another result of one of the generated smart replies 330 being selected, in accordance with an example embodiment. In FIG. 5, the second user has selected (e.g., clicked on, tapped) the corresponding selectable user interface element of smart reply 330B in FIG. 3. In response to this user selection of the corresponding selectable user interface element of smart reply 330B, the communication system 216 has inserted the selected smart reply 330B into the content entry field 320, but not yet transmitted a reply message including the selected smart reply 330B to the first user. Here, the second user has an opportunity to enter additional content (e.g., text, images) into the content entry field 320 for inclusion along with the selected smart reply 330B in the reply message or to edit (e.g., delete portions of) the selected smart reply 330B in the content entry field 320 before transmitting the reply message. When the second user is ready to send the content within content entry field 320 as a reply message to the first user, the second user selects the user interface element 325.
FIG. 6 is a block diagram illustrating the communication system 216, in accordance with an example embodiment. In some example embodiments, the communication system 216 comprises any combination of one or more of an interface module 610, a reply module 620, and one or more databases 630. The modules 610 and 620 and the database(s) 330 can reside on a computer system, or other machine, having a memory and at least one processor (not shown).
In some example embodiments, the communication system 216 comprises a remote server. For example, in some embodiments, the modules 610 and 620 and the database(s) 330 are incorporated into the application server(s) 118 in FIG. 1, and the database(s) 330 is incorporated into database(s) 126 in FIG. 1 and can include any combination of one or more of databases 218, 220, and 222 in FIG. 2. In some example embodiments, the communication system 216 comprises a client computing device. For example, in some embodiments, any combination of one or more of the modules 610 and 620 and the database(s) 330 are incorporated into one or more of the client machines 110 and 112 in FIG. 1 or the mobile device 300 in FIG. 3. It is contemplated that other configurations of the modules 610 and 620, as well as the database(s) 630, are also within the scope of the present disclosure.
In some example embodiments, one or more of the modules 610 and 620 is configured to provide a variety of user interface functionality, such as generating user interfaces, interactively presenting user interfaces to the user, receiving information from the user (e.g., interactions with user interfaces), and so on. Presenting information to the user can include causing presentation of information to the user (e.g., communicating information to a device with instructions to present the information to the user). Information may be presented using a variety of means including visually displaying information and using other device outputs (e.g., audio, tactile, and so forth). Similarly, information may be received via a variety of means including alphanumeric input or other device input (e.g., one or more touch screen, camera, tactile sensors, light sensors, infrared sensors, biometric sensors, microphone, gyroscope, accelerometer, other sensors, and so forth). In some example embodiments, one or more of the modules 610 and 620 is configured to receive user input. For example, one or more of the modules 610 and 620 can present one or more GUI elements (e.g., drop-down menu, selectable buttons, text field) with which a user can submit input.
In some example embodiments, one or more of the modules 610 and 620 is configured to perform various communication functions to facilitate the functionality described herein, such as by communicating with the social networking system 210 via the network 104 using a wired or wireless connection. Any combination of one or more of the modules 610 and 620 may also provide various web services or functions, such as retrieving information from the third party servers 130 and the social networking system 210. Information retrieved by the any of the modules 610 and 620 may include profile data corresponding to users and members of the social networking service of the social networking system 210.
Additionally, any combination of one or more of the modules 610 and 620 can provide various data functionality, such as exchanging information with the database(s) 630. For example, any of the modules 610 and 620 can access profile data, social graph data, and member activity and behavior data from the databases 218, 220, and 222 in FIG. 2, as well as exchange information with third party servers 130, client machines 110, 112, and other sources of information.
In some example embodiments, the interface module 610 is configured to detect that a set of one or more messages having content has been transmitted from a first computing device of a first user to a second computing device of a second user. For example, in FIG. 3, the interface module 610 has detected that message 310A or message 310B or both messages 310A and 310B have been transmitted to the first user.
In some example embodiments, the reply module 320 is configured to generate one or more smart replies in response to, or otherwise based on, the detection of the message(s) from the first user to the second user. In some example embodiments, the reply module 620 uses a classification model to predict which replies best match the context in which a suggested reply is to be used (e.g., the conversation thus far, the interlocutors of the conversation, and other pertinent information such as the time of day). However, different users employ different diction and phrasing to express the same idea. Although this variation among users could be incorporated into a single core classification model as, for example, a unique bias term for every individual user, this approach would add a vast number of parameters to the single core classification model (e.g., in a linear model, this would be one weight per user, per possible reply), would require a large amount of training data for each user, and would be neither transparent nor adaptive to product-driven heuristics.
In some example embodiments, the reply module 620 uses a personalization model separate from the core classification model. For each reply R initially selected by the core classification model with probability Pc(R), the reply module 620 finds a possible different personalized reply, R′ that has the same or similar meaning. The reply module 620 selects this final R′ by computing a probability or score for all possible candidate replies, P(R′), combining the probability given by the core classification model for the original reply, Pc(R), and the personalization model's conditional probability for the final reply R′ given the original reply, Pp(R′|R). In some example embodiments, the reply module 620 employs the following combination of the core classification model (e.g., a first model) and the personalization model (e.g., a second model):
P ? ( R ) = 1 z ? P c ? ( R ) * P p ? ( R | R ) w ,
where w is a weighting exponent that determines the relative importance of the personalization model (e.g., a higher weight corresponds to personalization mattering relatively more) and Z is a normalization term to ensure that all the probabilities of all possible replies sum to 1. In some example embodiments, the personalization model is configured to rely or to otherwise be based on two sources of information: a synonym hierarchy and observations of the replies selected by users.
In some example embodiments, the synonym hierarchy comprises a tree of concepts ranging from the most general root nodes (e.g., gratitude, yes/no answers, conversation openers, etc.) to the most specific leaves, which are the surface forms that are used as the actual smart replies. In some example embodiments, the synonym hierarchy comprises a directed acyclic graph and thus, e.g., a reply with multiple meanings can have multiple parents.
FIG. 7 illustrates a hierarchical graph 700 of synonym replies, in accordance with an example embodiment. The hierarchical graph 700 comprises a root node 710, intermediate nodes 720, and leaf nodes 730. The root node 710 represents a general meaning of gratitude. This general meaning of gratitude has different generalized forms of expression, such as “THANK YOU” and “APPRECIATED”, which are represented by intermediate nodes 720. These generalized forms of expression can be divided into more specific levels of expression, which can then be divided into even more specific levels of expression, and so on and so forth, until reaching the leaf nodes 730, which represent the surface forms that are to be considered for use as smart replies, such as “THANKS!”, “THANKS”, “THANK YOU!”, “THANK YOU”, “APPRECIATE IT”, and “APPRECIATE IT!” in FIG. 7. The leaf nodes 730 are synonyms of each other.
In some example embodiments, the reply module 620 uses a history of the second user's interactions with smart replies to determine which leaf nodes to select for presentation as smart replies to the second user. In some example embodiments, every time smart replies 330 are presented to the second user, the interface module 610 records the instance of such presentation, as well as which, if any, of the smart replies 330 were selected by the second user for inclusion in a reply message to the first user.
In some example embodiments, the reply module 620 is configured to use the synonym hierarchy in conjunction with the history of the user's interactions with smart replies to determine Pp(R′|R). For example, let the number of times user U has selected a reply that is a leaf below a node Sin the hierarchy (where S itself may be a leaf, e.g., a surface form/reply, in which case its sole leaf is itself) be CU(S), and let the number of times the user saw a reply that is a leaf below a node S be CN(S). Then, in some example embodiments, the reply module 620 uses the following formulation of the personalization model:
P p ? ( R | R ) = 1 Z ? D LCA ? ( R , R ) ? i = 0 n - 1 ? ? ( C U ? ( R i ) + L C N ? ( R i ) + L ) x i ,
where Z is a normalization factor to ensure that Pp is a distribution, D is a [0, 1] discount factor that rewards alternate replies R′ that are “closer” to R, LCA( . . . ) is a function that returns the height (measured from the leaf) of the least common ancestor of R and R′, and LCA(R, R)=0.
One example of a synonym hierarchy comprises the following path from root to leaf for the reply “Thanks a lot.”: Gratitude (having a level/height=general meaning)→Thank you (having a level/height=metasynset)→Thanks a bunch (having a level/height=synset)→Thanks a lot (having a level/height=near duplicate set)→“Thanks a lot.” (having a level/height=surface form/actual reply)
Using this example synonym hierarchy and the example formulation of the personalization model above, if R is “Thanks much” and R′ is “Thanks a lot”, they do not share an ancestor at height 1 (the near duplicate level), but they do share the “Thanks a bunch” ancestor at height 2 (the synset level). So LCA(“Thanks much”, “Thanks a lot”)=2. This is an exponent on D, and thus results in lower probabilities for personalized replies that have a higher common ancestor (and thus more disparate meaning) relative to the original reply. In some example embodiments, n is the total height of the synonym hierarchy (i iterates over each level of the tree), and Ri′ is the ith parent of the personalized reply R′ in the synonym hierarchy. For example, R0′=R, and R2′ is the synset of R′. Li is an additive smoothing constant for each level of the tree i, and X is a log-linear weight that determines the relative importance of the ith layer in the synonym hierarchy. In some example embodiments, rather than finding a log-linear weighted average as in the model above, the reply module 620 instead uses a backoff model: using the user's observed CTR (click-through rate) for R′ if the impression and click counts are sufficiently high, and otherwise using the aggregated counts for the parent of R′ in the synonym hierarchy (recursing to the next higher level if that aggregated impression count is still insufficient, and so on).
In some example embodiments, the reply module 620 uses the synonym hierarchy to smooth the possibly sparse counts for any given user, similar to ngram backoff and smoothing in neuro-linguistic programming (NLP), and to encourage exploration (e.g., trying smart replies with low impression counts—this is accomplished in the model described above by the additive smoothing constants Li that give a fixed number of hallucinated clicks and impressions to each reply, which makes low-impression-count replies unduly probable).
In some example embodiments, the reply module 620 is configured to determine a plurality of candidate replies based on the first content of the first set of one or more messages, and then select a plurality of smart replies from the plurality of candidate replies using a hierarchical graph data structure and at least one diversity rule. The hierarchical graph data structure comprises a tree of concepts ranging from a root node to a plurality of leaf nodes with at least one intermediate node in between the root node and each one of the plurality of leaf nodes, and each one of the plurality of candidate replies being represented by a corresponding one of the plurality of leaf nodes in the hierarchical graph data structure, as discussed above with respect to FIG. 7. Since there is often a limited amount of screen space on computing devices for displaying content, particularly with mobile devices, such as smartphones and smartwatches, a technical problem arises in how to most efficiently and effectively make use of the limited screen space. The reply module 620 may use the diversity rule(s) to ensure that a minimum amount of diversity is present in the smart replies 330 that are displayed within the GUI on the display screen 305 of the mobile device 300.
In some example embodiments, each diversity rule is configured to restrict the number of displayed smart replies 330 that have a common parent node or that have some other common relationship with a particular node to being within a specified maximum threshold. For example, one diversity rule may require that no more than two displayed smart replies 330 may have the same parent node. Referring to FIG. 7, this example diversity rule would prevent more than two leaf nodes 730 having the same intermediate node 720 as their parent node from being used as smart replies 330. For example, if an intermediate node 720 had three leaf nodes 730 as its children, the example diversity rule would cause the reply module 620 to select no more than two of the three child leaf nodes 720 of intermediate node 730 for use as smart replies 330. In addition to restrictions based on child-parent relationships, the diversity rules may also place restrictions on other types of relationships between nodes as well, such as a more distant ancestors and descendants (e.g., grandparent-grandchild relationships). In some example embodiments, the reply module 620 is configured to omit at least one of the plurality of candidate replies from selection to be included in the plurality of smart replies 330 based on the diversity rule(s).
In some example embodiments, the interface module 610 is configured to cause each one of the plurality of smart replies 330 to be displayed on the second computing device of the second user as a corresponding selectable user interface element, as discussed above with respect to FIG. 3. In some example embodiments, the reply module 620 is configured to receive a user selection of one of the plurality of smart replies 330 from the second computing device, and then transmit a second message including the selected one of the plurality of smart replies 330 to the first computing device in response to, or otherwise based on, the receiving of the user selection, as discussed above with respect to FIG. 4. In some example embodiments, the reply module 620 is configured to receive a user selection of one of the plurality of smart replies from the second computing device, and then insert the selected one of the plurality of smart replies into a content entry field displayed on the second computing device in response to, or otherwise based on, the receiving of the user selection, as discussed above with respect to FIG. 5.
In some example embodiments, the communication system 216 is configured to store a record of the user selection of the one of the plurality of smart replies in a database, such as in the database(s) 630, and then modify the second model based on the record of the user selection of the one of the plurality of smart replies using one or more machine learning operations. The communication system 216 uses the record of the user selection of the one of the plurality of smart replies as training data in the one or more machine learning operations to modify the second model.
In some instances, a cold-start problem may be encountered: until the user sees some smart replies and clicks on them, there is no information available about the user's preferences regarding smart replies. In order to mitigate this problem, the reply module 620 may rely on one or more groups to which the user belongs. In some example embodiments, the reply module 620 accesses the profile information of the user and the profile information of other users to determine a group of other users who have profile information that has a level of similarity that is determined to satisfy a predetermined similarity threshold. For example, the reply module 620 may analyze the profile information of the user and the other users to determine groups of users who have the same or similar location, have the same or similar age, have the same gender, have the same or similar culture, have the same or similar industry, have profile information embeddings that are within some distance K from the user's profile information embedding, etc.
A user may belong to multiple groups. For each group, the reply module 620 may employ a model Pp(R′|R) as before, but use the user selection data aggregated across all users in the group. In some example embodiments, the model based on the observations for the user U is Pp u(R′|R), the model for each group G is Pp g(R′|R), and the new model, smoothed via group membership, is:
1 Z ? P p u ? ( R | R ) ? g ? P p g ? ( R | R ) w g ,
where wg is a per-group weight that controls the relative influence of each group, which may be machine-learned from data. In some alternative example embodiments, the reply module 620 smooths the user selection data over groups directly rather than smoothing the probabilities from per-group models. For example, the reply module 620 may use a weighted sum or backoff on the selection/impression counts (e.g., using a weighted average of the user's own counts and the groups to which they belong).
The reply module 620 may determine whether or not to use the above-discussed group-based model based on a determination of whether or not there is sufficient user selection data for the second user. In some example embodiments, the reply module 620 is configured to, in generating the plurality of smart replies, determine that a number of times the corresponding synonym reply was presented to the second user as a selectable option for replying to messages is below a predetermined threshold (e.g., the predetermined threshold can be one impression instance), and then, based on the determination that the number of times the corresponding synonym reply was presented to the second user is below the predetermined threshold, identify a group of users to which the second user belongs based on a determination that a level of similarity between profile information of the second user and profile information of the group of users satisfies a predetermined similarity threshold. The reply module 620 then generates the plurality of smart replies using the second model based on the plurality of synonym replies and a number of times the group of users has selected the corresponding synonym reply for replying to messages.
Since different computing devices have different display screen sizes, displaying the same number of smart replies on every computing device may cause a technical problem. The screen size of smaller computing devices, such as smartphones or smartwatches, may be insufficient to support the display of the same number of smart replies as on a larger computing device, such as a desktop computer. In order to address this technical problem, in some example embodiments, the reply module 620 is configured to, in generating the plurality of smart replies, limit a number of the smart replies in the plurality of smart replies to no more than a particular number based on a screen size of the second computing device. For example, the reply module 620 may limit the number of smart replies to be displayed on smartphones and smartwatches to no more than three smart replies, while limiting the number of smart replies to be displayed on laptop computers and tablet computers to no more than five smart replies. It is contemplated that other numbers and configurations may be used in limiting the number of smart replies to be displayed.
In some example embodiments, the reply module 620 is configured to select a plurality of smart follow-up content from a plurality of candidate follow-up content in response to the transmitting of the second message including the selected one of the plurality of smart replies to the first computing device. The selecting of the plurality of smart follow-up content is based on at least one of the selected one of the plurality of smart replies and the first content of the first set of one or more messages. In some example embodiments, the reply module 620 is configured to generate the plurality of smart follow-up content by using the same model or a similar model as the model used to generate the smart replies. However, the reply module 620 may feed the selected smart reply into the model in order to generate the plurality of smart follow-up content. In some example embodiments, the reply module 620 does not generate any smart follow-up content in response to input being entered by the second user via the content entry field 320, but rather conditions the generation and display of the smart follow-up content on the second user selecting a smart reply or selecting a smart follow-up. In this respect, the reply module 620 may use only a selected smart reply or a selected smart follow-up content as the trigger and the basis for generating and displaying a smart-follow-up content or an additional smart follow-up content.
In some example embodiments, the reply module 620 selects the plurality of smart follow-up content by determining the plurality of candidate follow-up content based on at least one of the selected one of the plurality of smart replies and the first content of the first set of one or more messages, and then selecting the plurality of smart follow-up content from the plurality of candidate follow-up content using the hierarchical graph data structure and the diversity rule(s), with each one of the plurality of smart follow-up content being represented by a corresponding one of the plurality of leaf nodes in the hierarchical graph data structure. In some example embodiments, the reply module 620 is configured to omit at least one of the plurality of candidate follow-up content from selection to be included in the plurality of smart follow-up content based on the diversity rule(s), where the diversity rule(s) limit a number of the plurality of smart follow-up content that have a common parent node or some other common relationship with a particular node.
In some example embodiments, the interface module 610 is configured to cause each one of the plurality of smart follow-up content to be displayed on the second computing device of the second user as a corresponding selectable user interface element, similar to the display of the selectable user interface elements corresponding to the smart replies. In some example embodiments, the interface module 610 is also configured to receive a user selection of one of the plurality of smart follow-up content from the second computing device, and then transmit a third message including the selected one of the plurality of smart follow-up content to the first computing device in response to receiving the other user selection.
In some example embodiments, in order to conserve screen space while still providing the user with a maximum amount of options for smart replies and smart follow-up content, the interface module 610 is configured to first display the corresponding category concepts of a plurality of intermediate nodes 720 as selectable user interface elements. FIG. 8 illustrates generated smart reply categories 830 being displayed as or along with corresponding selectable options for replying to messages within a GUI on the display screen 305 of the mobile device 300, in accordance with an example embodiment. In FIG. 8, two category concepts 830A and 830B of smart replies are displayed along with corresponding selectable user interface elements 835A and 835B. The corresponding selectable user interface elements 835A and 835B are each configured to, in response to being selected, cause the smart replies 930 corresponding to the child nodes of the intermediate node corresponding to the selected user interface element 835 to be displayed as selectable smart replies. FIG. 9 illustrates a result of one of the selectable user interface elements 835 for the smart reply categories 830 being selected, in accordance with an example embodiment. In the example shown in FIG. 9, the selectable user interface element 835A corresponding to the concept of “THANK YOU” has been selected in FIG. 8, thereby resulting in the expansion of the “THANK YOU” concept into three selectable smart replies 930A, 930B, and 930C that have the same functionality as the selectable smart replies 330A, 330B, and 330C discussed above with respect to FIG. 3.
FIG. 10 is a flowchart illustrating a method 1000 of generating smart replies, in accordance with an example embodiment. The method 1000 can be performed by processing logic that can comprise hardware (e.g., circuitry, dedicated logic, programmable logic, microcode, etc.), software (e.g., instructions run on a processing device), or a combination thereof. In one implementation, the method 1000 is performed by the communication system 216 of FIGS. 2-3, as described above.
At operation 1010, the communication system 216 detects that a first set of one or more messages having first content has been transmitted from a first computing device of a first user to a second computing device of a second user. In some example embodiments, the first content of the first set of one or more messages comprises text. However, it is contemplated that other types of content are also within the scope of the present disclosure, including, but not limited to, image-based content (e.g., emojis, GIFs).
At operation 1020, the communication system 216 determines a plurality of candidate replies based on the first content of the first set of one or more messages. In some example embodiments, the communication system 216 searches a database of candidate replies using the first content in order to determine the plurality of candidate replies. For example, the communication system 216 may analyze the first content of the first set of one or more messages using a model to determine that it is a text message expressing “congratulations,” and then search the database of candidate replies for candidate replies that have been tagged as being replies to messages expressing “congratulations.” However, the communication system 216 may employ other techniques and operations in determining the plurality of candidate replies.
At operation 1030, the communication system 216 selects a plurality of smart replies from the plurality of candidate replies using a hierarchical graph data structure and at least one diversity rule. In some example embodiments, the hierarchical graph data structure comprises a tree of concepts ranging from a root node to a plurality of leaf nodes with at least one intermediate node in between the root node and each one of the plurality of leaf nodes, with each one of the plurality of smart replies being represented by a corresponding one of the plurality of leaf nodes in the hierarchical graph data structure. In some example embodiments, the selecting the plurality of smart replies comprises omitting at least one of the plurality of candidate replies from selection to be included in the plurality of smart replies based on the diversity rule(s), where the diversity rule(s) limit a number of the plurality of smart replies that have a common parent node or some other common relationship with a particular node. In some example embodiments, each one of the plurality of smart replies comprises text. However, it is contemplated that other types of smart replies are also within the scope of the present disclosure, including, but not limited to, image-based content (e.g., emojis, GIFs).
At operation 1040, the communication system 216 causes each one of the selected plurality of smart replies to be displayed on the second computing device of the second user as a corresponding selectable user interface element. For example, the communication system 216 may transmit the selected plurality of smart replies to the second computing device along with instructions to display the selected plurality of smart replies, thereby causing the second computing device to display the selected plurality of smart replies as corresponding selectable user interface elements.
At operation 1050, the communication system 216 receives a user selection of one of the plurality of smart replies from the second computing device. For example, the second user may click or tap on one of the smart replies, and the communication system 216 may receive an indication of the click or tap as the user selection.
At operation 1060, the communication system 216 transmits a second message including the selected one of the plurality of smart replies to the first computing device in response to, or otherwise based on, the receiving of the user selection. For example, the receiving of the user selection may trigger the automatic creation of the second message including the selected smart reply and the automatic transmission of the second message to the first computing device.
At operation 1052, the communication system 216, in response to or otherwise based on the receiving of the user selection at operation 1050, stores a record of the user selection of the one of the plurality of smart replies in a database. At operation 1054, the communication system 216 modifies one or more models used to generate the smart replies based on the record of the user selection of the one of the plurality of smart replies using one or more machine learning operations. In some example embodiments, the record of the user selection of the one of the plurality of smart replies is used as training data in the one or more machine learning operations.
It is contemplated that any of the other features described within the present disclosure can be incorporated into the method 1000.
FIG. 11 is a flowchart illustrating a method of generating smart follow-up contents, in accordance with an example embodiment. The method 1100 can be performed by processing logic that can comprise hardware (e.g., circuitry, dedicated logic, programmable logic, microcode, etc.), software (e.g., instructions run on a processing device), or a combination thereof. In one implementation, the method 1100 is performed by the communication system 216 of FIGS. 2-3, as described above.
In some example embodiments, operation 1110 performed in response to or otherwise based on operation 1060 of FIG. 10. At operation 1110, the communication system 216 detects that a message that includes a selected smart reply has been transmitted from the second computing device of the second user to the first computing device of the first user.
At operation 1120, the communication system 216 selects a plurality of smart follow-up content from a plurality of candidate follow-up content in response to the transmitting of the second message including the selected one of the plurality of smart replies to the first computing device. In some example embodiments, the selecting of the plurality of smart follow-up content is based on at least one of the selected one of the plurality of smart replies and the first content of the first set of one or more messages. In some example embodiments, the selecting of the plurality of smart follow-up content comprises determining the plurality of candidate follow-up content based on at least one of the selected one of the plurality of smart replies and the first content of the first set of one or more messages, and selecting the plurality of smart follow-up content from the plurality of candidate follow-up content using the hierarchical graph data structure and at least one diversity rule, where each one of the plurality of smart follow-up content is represented by a corresponding one of the plurality of leaf nodes in the hierarchical graph data structure. In some example embodiments, the selecting of the plurality of smart follow-up content comprises omitting at least one of the plurality of candidate follow-up content from selection to be included in the plurality of smart follow-up content based on the diversity rule(s), where the diversity rule(s) limit a number of the plurality of smart follow-up content that have a common parent node or have some other common relationship with a particular node.
At operation 1130, the communication system 216 causes each one of the plurality of smart follow-up content to be displayed on the second computing device of the second user as a corresponding selectable user interface element. For example, the communication system 216 may transmit the plurality of smart follow-up content to the second computing device along with instructions to display the plurality of smart follow-up content, thereby causing the second computing device to display the plurality of smart follow-up content as corresponding selectable user interface elements.
At operation 1140, the communication system 216 receives a user selection of one of the plurality of smart follow-up content from the second computing device. For example, the second user may click or tap on one of the smart follow-up content, and the communication system 216 may receive an indication of the click or tap as the user selection.
At operation 1150, the communication system 216 transmits another message including the selected one of the plurality of smart follow-up content to the first computing device in response to, or otherwise based on, the receiving of the user selection. For example, the receiving of the user selection may trigger the automatic creation of the other message including the selected smart follow-up content and the automatic transmission of the other message to the first computing device.
At operation 1142, the communication system 216, in response to or otherwise based on the receiving of the user selection at operation 1140, stores a record of the user selection of the one of the plurality of smart replies in a database. At operation 1144, the communication system 216 modifies one or more models used to generate the plurality of smart follow-up content based on the record of the user selection of the one of the plurality of smart follow-up content using one or more machine learning operations. In some example embodiments, the record of the user selection of the one of the plurality of smart follow-up content is used as training data in the one or more machine learning operations.
It is contemplated that any of the other features described within the present disclosure can be incorporated into the method 1000.
Example Mobile Device
FIG. 12 is a block diagram illustrating a mobile device 1200, according to an example embodiment. The mobile device 1200 can include a processor 1202. The processor 1202 can be any of a variety of different types of commercially available processors suitable for mobile devices 1200 (for example, an XScale architecture microprocessor, a Microprocessor without Interlocked Pipeline Stages (MIPS) architecture processor, or another type of processor). A memory 1204, such as a random access memory (RAM), a Flash memory, or other type of memory, is typically accessible to the processor 1202. The memory 1204 can be adapted to store an operating system (OS) 1206, as well as application programs 1208, such as a mobile location-enabled application that can provide location-based services (LBSs) to a user. The processor 1202 can be coupled, either directly or via appropriate intermediary hardware, to a display 1210 and to one or more input/output (I/O) devices 1212, such as a keypad, a touch panel sensor, a microphone, and the like. Similarly, in some embodiments, the processor 1202 can be coupled to a transceiver 1214 that interfaces with an antenna 1216. The transceiver 1214 can be configured to both transmit and receive cellular network signals, wireless data signals, or other types of signals via the antenna 1216, depending on the nature of the mobile device 1200. Further, in some configurations, a GPS receiver 1218 can also make use of the antenna 1216 to receive GPS signals.
Modules, Components and Logic
Certain embodiments are described herein as including logic or a number of components, modules, or mechanisms. Modules may constitute either software modules (e.g., code embodied (1) on a non-transitory machine-readable medium or (2) in a transmission signal) or hardware-implemented modules. A hardware-implemented module is tangible unit capable of performing certain operations and may be configured or arranged in a certain manner. In example embodiments, one or more computer systems (e.g., a standalone, client or server computer system) or one or more processors may be configured by software (e.g., an application or application portion) as a hardware-implemented module that operates to perform certain operations as described herein.
In various embodiments, a hardware-implemented module may be implemented mechanically or electronically. For example, a hardware-implemented module may comprise dedicated circuitry or logic that is permanently configured (e.g., as a special-purpose processor, such as a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)) to perform certain operations. A hardware-implemented module may also comprise programmable logic or circuitry (e.g., as encompassed within a general-purpose processor or other programmable processor) that is temporarily configured by software to perform certain operations. It will be appreciated that the decision to implement a hardware-implemented module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.
Accordingly, the term “hardware-implemented module” should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired) or temporarily or transitorily configured (e.g., programmed) to operate in a certain manner and/or to perform certain operations described herein. Considering embodiments in which hardware-implemented modules are temporarily configured (e.g., programmed), each of the hardware-implemented modules need not be configured or instantiated at any one instance in time. For example, where the hardware-implemented modules comprise a general-purpose processor configured using software, the general-purpose processor may be configured as respective different hardware-implemented modules at different times. Software may accordingly configure a processor, for example, to constitute a particular hardware-implemented module at one instance of time and to constitute a different hardware-implemented module at a different instance of time.
Hardware-implemented modules can provide information to, and receive information from, other hardware-implemented modules. Accordingly, the described hardware-implemented modules may be regarded as being communicatively coupled. Where multiple of such hardware-implemented modules exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) that connect the hardware-implemented modules. In embodiments in which multiple hardware-implemented modules are configured or instantiated at different times, communications between such hardware-implemented modules may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware-implemented modules have access. For example, one hardware-implemented module may perform an operation, and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware-implemented module may then, at a later time, access the memory device to retrieve and process the stored output. Hardware-implemented modules may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information).
The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions. The modules referred to herein may, in some example embodiments, comprise processor-implemented modules.
Similarly, the methods described herein may be at least partially processor-implemented. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented modules. The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processor or processors may be located in a single location (e.g., within a home environment, an office environment or as a server farm), while in other embodiments the processors may be distributed across a number of locations.
The one or more processors may also operate to support performance of the relevant operations in a “cloud computing” environment or as a “software as a service” (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., Application Program Interfaces (APIs).)
Electronic Apparatus and System
Example embodiments may be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of them. Example embodiments may be implemented using a computer program product, e.g., a computer program tangibly embodied in an information carrier, e.g., in a machine-readable medium for execution by, or to control the operation of, data processing apparatus, e.g., a programmable processor, a computer, or multiple computers.
A computer program can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, subroutine, or other unit suitable for use in a computing environment. A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network.
In example embodiments, operations may be performed by one or more programmable processors executing a computer program to perform functions by operating on input data and generating output. Method operations can also be performed by, and apparatus of example embodiments may be implemented as, special purpose logic circuitry, e.g., a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC).
The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other. In embodiments deploying a programmable computing system, it will be appreciated that both hardware and software architectures merit consideration. Specifically, it will be appreciated that the choice of whether to implement certain functionality in permanently configured hardware (e.g., an ASIC), in temporarily configured hardware (e.g., a combination of software and a programmable processor), or a combination of permanently and temporarily configured hardware may be a design choice. Below are set out hardware (e.g., machine) and software architectures that may be deployed, in various example embodiments.
Example Machine Architecture and Machine-Readable Medium
FIG. 13 is a block diagram of an example computer system 1300 on which methodologies described herein may be executed, in accordance with an example embodiment. In alternative embodiments, the machine operates as a standalone device or may be connected (e.g., networked) to other machines. In a networked deployment, the machine may operate in the capacity of a server or a client machine in server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. The machine may be a personal computer (PC), a tablet PC, a set-top box (STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a network router, switch or bridge, or any machine capable of executing instructions (sequential or otherwise) that specify actions to be taken by that machine. Further, while only a single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
The example computer system 1300 includes a processor 1302 (e.g., a central processing unit (CPU), a graphics processing unit (GPU) or both), a main memory 1304 and a static memory 1306, which communicate with each other via a bus 1308. The computer system 1300 may further include a graphics display unit 1310 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)). The computer system 1300 also includes an alphanumeric input device 1312 (e.g., a keyboard or a touch-sensitive display screen), a user interface (UI) navigation device 1314 (e.g., a mouse), a storage unit 1316, a signal generation device 1318 (e.g., a speaker) and a network interface device 1320.
Machine-Readable Medium
The storage unit 1316 includes a machine-readable medium 1322 on which is stored one or more sets of instructions and data structures (e.g., software) 1324 embodying or utilized by any one or more of the methodologies or functions described herein. The instructions 1324 may also reside, completely or at least partially, within the main memory 1304 and/or within the processor 1302 during execution thereof by the computer system 1300, the main memory 1304 and the processor 1302 also constituting machine-readable media.
While the machine-readable medium 1322 is shown in an example embodiment to be a single medium, the term “machine-readable medium” may include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more instructions 1324 or data structures. The term “machine-readable medium” shall also be taken to include any tangible medium that is capable of storing, encoding or carrying instructions (e.g., instructions 1324) for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure, or that is capable of storing, encoding or carrying data structures utilized by or associated with such instructions. The term “machine-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media. Specific examples of machine-readable media include non-volatile memory, including by way of example semiconductor memory devices, e.g., Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), and flash memory devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks.
Transmission Medium
The instructions 1324 may further be transmitted or received over a communications network 1326 using a transmission medium. The instructions 1324 may be transmitted using the network interface device 1320 and any one of a number of well-known transfer protocols (e.g., HTTP). Examples of communication networks include a local area network (“LAN”), a wide area network (“WAN”), the Internet, mobile telephone networks, Plain Old Telephone Service (POTS) networks, and wireless data networks (e.g., WiFi and WiMax networks). The term “transmission medium” shall be taken to include any intangible medium that is capable of storing, encoding or carrying instructions for execution by the machine, and includes digital or analog communications signals or other intangible media to facilitate communication of such software.
Although an embodiment has been described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the present disclosure. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. The accompanying drawings that form a part hereof, show by way of illustration, and not of limitation, specific embodiments in which the subject matter may be practiced. The embodiments illustrated are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed herein. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. This Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled. Although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.

Claims (20)

What is claimed is:
1. A computer-implemented method comprising:
detecting, by a computer system comprising a memory and at least one hardware processor, that a first set of one or more messages having first content has been transmitted from a first computing device of a first user to a second computing device of a second user;
selecting, by the computer system, a plurality of category concepts based on the first content of the first set of one or more messages using a hierarchical graph data structure, the hierarchical graph data structure comprising a tree of concepts ranging from a root node to a plurality of leaf nodes with at least one intermediate node in between the root node and each one of the plurality of leaf nodes, each one of the plurality of category concepts being represented by a corresponding intermediate node in the hierarchical graph data structure;
causing, by the computer system, each one of the plurality of category concepts to be displayed on the second computing device of the second user as a corresponding selectable user interface element;
receiving, by the computer system, a first user selection of the corresponding selectable user interface element of one of the plurality of category concepts from the second computing device; and
causing, by the computer system, a plurality of smart replies to be displayed on the second computing device in response to the user selection of the corresponding selectable user interface element of the one of the plurality of category concepts, the plurality of smart replies corresponding to leaf nodes of the intermediate node that corresponds to the one of the plurality of category concepts in the hierarchical graph data structure.
2. The computer-implemented method of claim 1, further comprising:
receiving, by the computer system, a second user selection of one of the plurality of smart replies from the second computing device from the second computing device; and
transmitting, by the computer system, a second message including the selected one of the plurality of smart replies to the first computing device in response to the receiving of the second user selection.
3. The computer-implemented method of claim 1, wherein the causing the plurality of smart replies to be displayed on the second computing device comprises:
determining a plurality of candidate replies based on the first content of the first set of one or more messages; and
selecting the plurality of smart replies from the plurality of candidate replies, the selecting the plurality of smart replies comprising omitting at least one of the plurality of candidate replies from selection to be included in the plurality of smart replies based on at least one diversity rule, the at least one diversity rule limiting a number of the plurality of smart replies that have a common parent node,
wherein the causing the plurality of smart replies to be displayed on the second computing device is based on the selecting of the plurality of smart replies from the plurality of candidate replies.
4. The computer-implemented method of claim 1, wherein the first content of the first set of one or more messages comprises text.
5. The computer-implemented method of claim 1, wherein each one of the plurality of smart replies comprises text.
6. The computer-implemented method of claim 1, wherein the computer system comprises a remote server.
7. The computer-implemented method of claim 1, wherein the computer system comprises the second computing device.
8. A computer system comprising:
at least one hardware processor; and
a non-transitory machine-readable medium embodying a set of instructions that, when executed by the at least one hardware processor, cause the at least one processor to perform operations, the operations comprising:
detecting that a first set of one or more messages having first content has been transmitted from a first computing device of a first user to a second computing device of a second user;
selecting a plurality of category concepts based on the first content of the first set of one or more messages using a hierarchical graph data structure, the hierarchical graph data structure comprising a tree of concepts ranging from a root node to a plurality of leaf nodes with at least one intermediate node in between the root node and each one of the plurality of leaf nodes, each one of the plurality of category concepts being represented by a corresponding intermediate node in the hierarchical graph data structure;
causing each one of the plurality of category concepts to be displayed on the second computing device of the second user as a corresponding selectable user interface element;
receiving a first user selection of the corresponding selectable user interface element of one of the plurality of category concepts from the second computing device; and
causing a plurality of smart replies to be displayed on the second computing device in response to the user selection of the corresponding selectable user interface element of the one of the plurality of category concepts, the plurality of smart replies corresponding to leaf nodes of the intermediate node that corresponds to the one of the plurality of category concepts in the hierarchical graph data structure.
9. The system of claim 8, wherein the operations further comprise:
receiving a second user selection of one of the plurality of smart replies from the second computing device from the second computing device; and
transmitting a second message including the selected one of the plurality of smart replies to the first computing device in response to the receiving of the second user selection.
10. The system of claim 8, wherein the causing the plurality of smart replies to be displayed on the second computing device comprises:
determining a plurality of candidate replies based on the first content of the first set of one or more messages; and
selecting the plurality of smart replies from the plurality of candidate replies, the selecting the plurality of smart replies comprising omitting at least one of the plurality of candidate replies from selection to be included in the plurality of smart replies based on at least one diversity rule, the at least one diversity rule limiting a number of the plurality of smart replies that have a common parent node,
wherein the causing the plurality of smart replies to be displayed on the second computing device is based on the selecting of the plurality of smart replies from the plurality of candidate replies.
11. The system of claim 8, wherein the first content of the first set of one or more messages comprises text.
12. The system of claim 8, wherein each one of the plurality of smart replies comprises text.
13. The system of claim 8, wherein the computer system comprises a remote server.
14. The system of claim 8, wherein the computer system comprises the second computing device.
15. A non-transitory machine-readable medium embodying a set of instructions that, when executed by at least one hardware processor, cause the processor to perform operations, the operations comprising:
detecting, by a computer system comprising the at least one hardware processor, that a first set of one or more messages having first content has been transmitted from a first computing device of a first user to a second computing device of a second user;
selecting, by the computer system, a plurality of category concepts based on the first content of the first set of one or more messages using a hierarchical graph data structure, the hierarchical graph data structure comprising a tree of concepts ranging from a root node to a plurality of leaf nodes with at least one intermediate node in between the root node and each one of the plurality of leaf nodes, each one of the plurality of category concepts being represented by a corresponding intermediate node in the hierarchical graph data structure;
causing, by the computer system, each one of the plurality of category concepts to be displayed on the second computing device of the second user as a corresponding selectable user interface element;
receiving, by the computer system, a first user selection of the corresponding selectable user interface element of one of the plurality of category concepts from the second computing device; and
causing, by the computer system, a plurality of smart replies to be displayed on the second computing device in response to the user selection of the corresponding selectable user interface element of the one of the plurality of category concepts, the plurality of smart replies corresponding to leaf nodes of the intermediate node that corresponds to the one of the plurality of category concepts in the hierarchical graph data structure.
16. The non-transitory machine-readable medium of claim 15, wherein the operations further comprise:
receiving, by the computer system, a second user selection of one of the plurality of smart replies from the second computing device from the second computing device; and
transmitting, by the computer system, a second message including the selected one of the plurality of smart replies to the first computing device in response to the receiving of the second user selection.
17. The non-transitory machine-readable medium of claim 15, wherein the causing the plurality of smart replies to be displayed on the second computing device comprises:
determining a plurality of candidate replies based on the first content of the first set of one or more messages; and
selecting the plurality of smart replies from the plurality of candidate replies, the selecting the plurality of smart replies comprising omitting at least one of the plurality of candidate replies from selection to be included in the plurality of smart replies based on at least one diversity rule, the at least one diversity rule limiting a number of the plurality of smart replies that have a common parent node,
wherein the causing the plurality of smart replies to be displayed on the second computing device is based on the selecting of the plurality of smart replies from the plurality of candidate replies.
18. The non-transitory machine-readable medium of claim 15, wherein the first content of the first set of one or more messages comprises text.
19. The non-transitory machine-readable medium of claim 15, wherein each one of the plurality of smart replies comprises text.
20. The non-transitory machine-readable medium of claim 15, wherein the computer system comprises a remote server.
US17/352,978 2025-08-05 2025-08-05 Generating diverse smart replies using synonym hierarchy Active US11334714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/352,978 US11334714B2 (en) 2025-08-05 2025-08-05 Generating diverse smart replies using synonym hierarchy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/020,148 US11062084B2 (en) 2025-08-05 2025-08-05 Generating diverse smart replies using synonym hierarchy
US17/352,978 US11334714B2 (en) 2025-08-05 2025-08-05 Generating diverse smart replies using synonym hierarchy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/020,148 Continuation US11062084B2 (en) 2025-08-05 2025-08-05 Generating diverse smart replies using synonym hierarchy

Publications (2)

Publication Number Publication Date
US20210312126A1 US20210312126A1 (en) 2025-08-05
US11334714B2 true US11334714B2 (en) 2025-08-05

Family

ID=66810854

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/020,148 Active 2025-08-05 US11062084B2 (en) 2025-08-05 2025-08-05 Generating diverse smart replies using synonym hierarchy
US17/352,978 Active US11334714B2 (en) 2025-08-05 2025-08-05 Generating diverse smart replies using synonym hierarchy

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/020,148 Active 2025-08-05 US11062084B2 (en) 2025-08-05 2025-08-05 Generating diverse smart replies using synonym hierarchy

Country Status (4)

Country Link
US (2) US11062084B2 (en)
EP (1) EP3814937A1 (en)
CN (1) CN112368693B (en)
WO (1) WO2020005404A1 (en)

Families Citing this family (9)

* Cited by examiner, ? Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019051615A1 (en) * 2025-08-05 2025-08-05 Rubikloud Technologies Inc. Method and system for hierarchical forecasting
US11556897B2 (en) 2025-08-05 2025-08-05 Microsoft Technology Licensing, Llc Job-post budget recommendation based on performance
US11188194B2 (en) 2025-08-05 2025-08-05 Microsoft Technology Licensing, Llc Personalization and synonym hierarchy for smart replies
US11658926B2 (en) 2025-08-05 2025-08-05 Microsoft Technology Licensing, Llc Generating smart replies involving image files
USD941830S1 (en) * 2025-08-05 2025-08-05 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
US11107092B2 (en) 2025-08-05 2025-08-05 Sprinklr, Inc. Content insight system
US11715134B2 (en) 2025-08-05 2025-08-05 Sprinklr, Inc. Content compliance system
US11144730B2 (en) * 2025-08-05 2025-08-05 Sprinklr, Inc. Modeling end to end dialogues using intent oriented decoding
CN113360629A (en) * 2025-08-05 2025-08-05 中国银行股份有限公司 Intelligent bank customer service response method and device

Citations (9)

* Cited by examiner, ? Cited by third party
Publication number Priority date Publication date Assignee Title
US20030120732A1 (en) 2025-08-05 2025-08-05 Jeffrey Couts System and method for responding to a communication message with a canned reply
US20080152231A1 (en) 2025-08-05 2025-08-05 Salih Burak Gokturk System and method for enabling image recognition and searching of images
US20140365915A1 (en) 2025-08-05 2025-08-05 Samsung Electronics Co., Ltd. Method for creating short message and portable terminal using the same
CN104620240A (en) 2025-08-05 2025-08-05 微软公司 Gesture-based search queries
US20160328147A1 (en) 2025-08-05 2025-08-05 Shanghai Chule (CooTek) Information Technology Co. Ltd. Method, system and device for inputting text by consecutive slide
JP2016212860A (en) 2025-08-05 2025-08-05 株式会社カカオ Message service providing method for message service connected to search service, message server performing message service providing method, and user terminal
US20180039406A1 (en) 2025-08-05 2025-08-05 Google Inc. Image search query predictions by a keyboard
CN107870974A (en) 2025-08-05 2025-08-05 谷歌公司 Use the intelligent replying of model in equipment
US20180278553A1 (en) 2025-08-05 2025-08-05 Samsung Electronics Co., Ltd. Answer message recommendation method and device therefor

Family Cites Families (24)

* Cited by examiner, ? Cited by third party
Publication number Priority date Publication date Assignee Title
KR101108837B1 (en) 2025-08-05 2025-08-05 ???? ???? Message storage device and method of mobile terminal
US8649808B2 (en) * 2025-08-05 2025-08-05 Microsoft Corporation Universal mobile device messaging
SG178829A1 (en) 2025-08-05 2025-08-05 Univ Nanyang Tech Textual query based multimedia retrieval system
US20110173174A1 (en) 2025-08-05 2025-08-05 Flitcroft Investments Ltd Linguistically enhanced search engine and meta-search engine
US8819052B2 (en) 2025-08-05 2025-08-05 Ebay Inc. Traffic driver for suggesting stores
US8589407B2 (en) 2025-08-05 2025-08-05 Google Inc. Automated generation of suggestions for personalized reactions in a social network
WO2013128974A1 (en) * 2025-08-05 2025-08-05 インターナショナル?ビジネス?マシーンズ?コーポレーション Data display device, data display method and program
US9330116B2 (en) * 2025-08-05 2025-08-05 Oracle International Corporation Determining hierarchical paths to nodes
US9442967B2 (en) * 2025-08-05 2025-08-05 Facebook, Inc. Systems and methods for efficient data ingestion and query processing
US10924444B2 (en) 2025-08-05 2025-08-05 Facebook, Inc. Device, method, and graphical user interface for managing customer relationships using a lightweight messaging platform
US10366111B1 (en) * 2025-08-05 2025-08-05 EMC IP Holding Company LLC Scalable distributed computations utilizing multiple distinct computational frameworks
US20170060924A1 (en) * 2025-08-05 2025-08-05 Exablox Corporation B-Tree Based Data Model for File Systems
US10021051B2 (en) 2025-08-05 2025-08-05 Google Llc Methods and apparatus for determining non-textual reply content for inclusion in a reply to an electronic communication
US10606803B2 (en) * 2025-08-05 2025-08-05 Netapp, Inc. Data cloning in memory-based file systems
US9942732B2 (en) * 2025-08-05 2025-08-05 Microsoft Technology Licensing, Llc Triggering actions with mobile messages
US10374996B2 (en) * 2025-08-05 2025-08-05 Microsoft Technology Licensing, Llc Intelligent processing and contextual retrieval of short message data
CN109952572B (en) * 2025-08-05 2025-08-05 谷歌有限责任公司 Suggested response based on message decal
US10015124B2 (en) * 2025-08-05 2025-08-05 Google Llc Automatic response suggestions based on images received in messaging applications
US10146768B2 (en) 2025-08-05 2025-08-05 Google Llc Automatic suggested responses to images received in messages using language model
US10467509B2 (en) * 2025-08-05 2025-08-05 Microsoft Technology Licensing, Llc Computationally-efficient human-identifying smart assistant computer
KR101947503B1 (en) * 2025-08-05 2025-08-05 ???? ?????? Computer device for providing tree index
US11556897B2 (en) 2025-08-05 2025-08-05 Microsoft Technology Licensing, Llc Job-post budget recommendation based on performance
US11658926B2 (en) 2025-08-05 2025-08-05 Microsoft Technology Licensing, Llc Generating smart replies involving image files
US11188194B2 (en) 2025-08-05 2025-08-05 Microsoft Technology Licensing, Llc Personalization and synonym hierarchy for smart replies

Patent Citations (9)

* Cited by examiner, ? Cited by third party
Publication number Priority date Publication date Assignee Title
US20030120732A1 (en) 2025-08-05 2025-08-05 Jeffrey Couts System and method for responding to a communication message with a canned reply
US20080152231A1 (en) 2025-08-05 2025-08-05 Salih Burak Gokturk System and method for enabling image recognition and searching of images
US20140365915A1 (en) 2025-08-05 2025-08-05 Samsung Electronics Co., Ltd. Method for creating short message and portable terminal using the same
CN104620240A (en) 2025-08-05 2025-08-05 微软公司 Gesture-based search queries
US20160328147A1 (en) 2025-08-05 2025-08-05 Shanghai Chule (CooTek) Information Technology Co. Ltd. Method, system and device for inputting text by consecutive slide
JP2016212860A (en) 2025-08-05 2025-08-05 株式会社カカオ Message service providing method for message service connected to search service, message server performing message service providing method, and user terminal
US20180278553A1 (en) 2025-08-05 2025-08-05 Samsung Electronics Co., Ltd. Answer message recommendation method and device therefor
US20180039406A1 (en) 2025-08-05 2025-08-05 Google Inc. Image search query predictions by a keyboard
CN107870974A (en) 2025-08-05 2025-08-05 谷歌公司 Use the intelligent replying of model in equipment

Non-Patent Citations (4)

* Cited by examiner, ? Cited by third party
Title
"First Office Action and Search Report Issued in Chinese Patent Application No. 201980043498.0", dated Dec. 28, 2021, 19 Pages.
"Non Final Office Action Issued in U.S. Appl. No. 16/019,925", dated Dec. 13, 2021, 14 Pages.
"Non Final Office Action Issued in U.S. Appl. No. 16/019,925", dated May 28, 2021, 17 Pages.
"Non Final Office Action Issued in U.S. Appl. No. 16/020,167", dated Mar. 10, 2021, 23 Pages.

Also Published As

Publication number Publication date
WO2020005404A1 (en) 2025-08-05
EP3814937A1 (en) 2025-08-05
US11062084B2 (en) 2025-08-05
US20210312126A1 (en) 2025-08-05
CN112368693B (en) 2025-08-05
US20200004825A1 (en) 2025-08-05
CN112368693A (en) 2025-08-05

Similar Documents

Publication Publication Date Title
US11334714B2 (en) Generating diverse smart replies using synonym hierarchy
US10771424B2 (en) Usability and resource efficiency using comment relevance
US11188194B2 (en) Personalization and synonym hierarchy for smart replies
US9244522B2 (en) Guided browsing experience
US11138281B2 (en) System user attribute relevance based on activity
US20200104427A1 (en) Personalized neural query auto-completion pipeline
US11397899B2 (en) Filtering content using generalized linear mixed models
US20190258984A1 (en) Generative adversarial networks in predicting sequential data
US11176216B2 (en) Context aware personalized query autocompletion
US20200202170A1 (en) Modular autotune for automated feed model training
US20200004827A1 (en) Generalized linear mixed models for generating recommendations
US11436542B2 (en) Candidate selection using personalized relevance modeling system
US10198512B2 (en) Search relevance using past searchers' reputation
US20180285751A1 (en) Size data inference model based on machine-learning
US9779136B2 (en) Rearranging search operators
EP3815309B1 (en) Generating smart replies involving image files
US20200410049A1 (en) Personalizing online feed presentation using machine learning
US20210089602A1 (en) Tuning model parameters to optimize online content
US11138509B2 (en) Reducing electronic resource consumption using data inference
US20210326401A1 (en) Scaling workloads using staging and computation pushdown
US20200311157A1 (en) System user attribute disambiguation based on cohort
US10496721B2 (en) Online activity index
US10992773B2 (en) Action prompt transmission based on attribute affinity
US20200201488A1 (en) User interface for replying privately to posts
US20190190877A1 (en) Inverted fan-out for relevant notification of activity

Legal Events

Date Code Title Description
FEPP Fee payment procedure 百度 救援队的协调员保罗·史密斯说:“有很多海洋生物会经过该水域进行迁徙,但是像这样大小的抹香鲸是不常见的,他们不经常来东边这片海域。

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PASTERNACK, JEFFREY WILLIAM;DHARIWAL, ARPIT;ZHAO, BING;AND OTHERS;SIGNING DATES FROM 20180710 TO 20180821;REEL/FRAME:057899/0033

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
邮政什么时候上班 白细胞低吃什么补得快 34岁属什么 缺少雌激素吃什么可以补充 姿态万千的意思是什么
大千是什么意思 肺结节是什么原因 发物都有什么 蚕蛹过敏什么办法最快 去韩国需要办理什么手续
gala是什么意思 输氨基酸对身体有什么好处和坏处 肝郁血瘀吃什么中成药 六一年属什么生肖 角是什么意思
鱼加它是什么字 a型血为什么叫贵族血 愤青什么意思 5月26日什么星座 女生胸部发育到什么年龄
肚脐眼连接体内的什么器官hcv9jop1ns9r.cn 皮肤黑穿什么颜色xinjiangjialails.com 牛肉炖什么菜好吃hcv9jop5ns5r.cn 什么是中产阶级hcv8jop5ns2r.cn 尿频是什么意思hcv8jop8ns0r.cn
燕窝什么时候吃最好hcv7jop9ns2r.cn 无菌性前列腺炎吃什么药效果好hcv9jop7ns4r.cn 牛肉发绿色是什么原因hcv9jop2ns8r.cn 男人有霉菌是什么症状hcv8jop6ns1r.cn 台湾以前叫什么名字hcv9jop1ns5r.cn
小腿酸胀痛是什么原因hcv8jop7ns2r.cn 青团是什么节日吃的bfb118.com 二月初二是什么星座hcv8jop5ns3r.cn 取决于你是什么意思0735v.com 什么因果才会有双胞胎hcv9jop3ns5r.cn
不打自招是什么生肖0297y7.com 慢性支气管炎吃什么药好hcv9jop0ns3r.cn 日柱将星是什么意思cl108k.com 口幼读什么hcv8jop9ns1r.cn 五行缺土戴什么inbungee.com
百度